answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Andre45 [30]
1 year ago
14

Use this free body diagram to help you find the magnitude of the force F2 needed to keep this block in static equilibrium. WILL

GIVE BRAINLIEST

Physics
1 answer:
oksian1 [2.3K]1 year ago
4 0
Static equilibrium means that all forces are equal, so make this easiest you want to break F1 into it's horizontal and vertical components. As there are no other forces acting in the horizontal, we know the horizontal component of F1 is 40N. This allows the vertical component to be found using pythagorus theorem. After finding the vertical and horizontal components, you just have to add the vertical components to find the difference between the up and down.

You might be interested in
The value of specific heat for copper is 390 J/kg⋅C∘, for aluminun is 900 J/kg⋅C∘, and for water is 4186 J/kg⋅C∘.
abruzzese [7]

Answer:

The equilibrium temperature is

21.97°c

Explanation:

This problem bothers on the heat capacity of materials

Given data

specific heat capacities

copper is Cc =390 J/kg⋅C∘,

aluminun Ca = 900 J/kg⋅C∘,

water Cw = 4186 J/kg⋅C∘.

Mass of substances

Copper Mc = 235g

Aluminum Ma = 135g

Water Mw = 825g

Temperatures

Copper θc = 255°c

Water and aluminum calorimeter θ1= 16°c

Equilibrium temperature θf =?

Applying the principle of conservation of heat energy, heat loss by copper equal heat gained by aluminum calorimeter and water

McCc(θc-θf) =(MaCa+MwCw)(θf-θ1)

Substituting our data into the expression we have

235*390(255-θf)=

(135*900+825*4186)(θf-16)

91650(255-θf)=(3574950)(θf-16)

23.37*10^6-91650*θf=3.57*10^6θf- +57.2*10^6

Collecting like terms and rearranging

23.37*10^6+57.2*10^6=3.57*10^6θf+91650θf

8.2*10^6=3.66*10^6θf

θf=80.5*10^6/3.6*10^6

θf =21.97°c

5 0
1 year ago
You are on vacation in San Francisco and decide to take a cable car to see the city. A 5800-kgkg cable car goes 260 mm up a hill
Stella [2.4K]

Answer:

4.325\times10^6J

Explanation:

Mass of the cable car, m = 5800 kg

It goes 260 m up a hill, along a slope of \theta=17^o

Therefore vertical elevation of the car = 260sin\theta=260sin17^o=76.0166m

Now, when you get into the cable car, it's velocity is zero, that is, initial kinetic energy is zero (since K.E. = \frac{1}{2} mv^2). Similarly as the car reaches the top, it halts and hence final kinetic energy is zero.

Therefore the only possible change in the cable car system is the change in it's gravitational potential energy.

Hence, total change in energy = mgh = 5800\times9.81\times76.0166J=4.325\times10^6J

where, g = acceleration due to gravity

h = height/vertical elevation

4 0
2 years ago
A spring stretches 0.220 m when a 0.400 kg-mass is hung from it. What is its spring constant? (Mass is not a force )
Fantom [35]
We want to know the amount of force that stretches the spring 0.22 m.
That force is the WEIGHT of the mass hung from it.
The weight of the mass is (mass) times (gravity).
To do that calculation, we need to know the value of gravity, but
gravity has different values on every planet.  I shall assume that
this whole springy question is taking place on Earth, so that the
value of gravity is 9.8 m/s² .

The weight of the mass is (0.4 kg) x (9.8 m/s²) = 3.92 Newtons.

The spring constant is

(force/length of the stretch)

= (3.92 Newtons) / (0.22 meters)

= (3.92 / 0.22) Newtons/meter

= 17.82 N/m .

8 0
2 years ago
Read 2 more answers
for a given initial projectile speed, you observe that the projectile has a certain range R at a launch angle of a = 30. For wha
VLD [36.1K]

Answer:

The other angle is 30 degrees.

Explanation:

The range of projectile is given by :

R=\dfrac{u^2\ \sin2\theta}{g}

Here,

u is the speed of launch of projectile

Here, \theta=30^{\circ}

We need to find the other launch angle when the projectile have the same range, such that,

\dfrac{u^2\ \sin(60)}{g}=\dfrac{u^2\ \sin2\alpha}{g}

\sin(60)=\sin2\alpha

\dfrac{\sqrt3}{2}=\sin2\alpha

\alpha =30^{\circ}

So, the other angle is 30 degrees. Hence, this is the required solution.

3 0
2 years ago
5.16 An insulated container, filled with 10 kg of liquid water at 20 C, is fitted with a stirrer. The stirrer is made to turn by
Anna007 [38]

Answer:

a) W=2.425kJ

b) \Delta E=2.425kJ

c) T_f=20.06^{o}C

d) Q=-2.425kJ

Explanation:

a)

First of all, we need to do a drawing of what the system looks like, this will help us visualize the problem better and take the best possible approach. (see attached picture)

The problem states that this will be an ideal system. This is, there will be no friction loss and all the work done by the object is transferred to the water. Therefore, we need to calculate the work done by the object when falling those 10m. Work done is calculated by using the following formula:

W=Fd

Where:

W=work done [J]

F= force applied [N]

d= distance [m]

In this case since it will be a vertical movement, the force is calculated like this:

F=mg

and the distance will be the height

d=h

so the formula gets the following shape:

W=mgh

so now e can substitute:

W=(25kg)(9.7 m/s^{2})(10m)

which yields:

W=2.425kJ

b) Since all the work is tansferred to the water, then the increase in internal energy will be the same as the work done by the object, so:

\Delta E=2.425kJ

c) In order to find the final temperature of the water after all the energy has been transferred we can make use of the following formula:

\Delta Q=mC_{p}(T_{f}-T_{0})

Where:

Q= heat transferred

m=mass

C_{p}=specific heat

T_{f}= Final temperature.

T_{0}= initial temperature.

So we can solve the forula for the final temperature so we get:

T_{f}=\frac{\Delta Q}{mC_{p}}+T_{0}

So now we can substitute the data we know:

T_{f}=\frac{2 425J}{(10000g)(4.1813\frac{J}{g-C})}+20^{o}C

Which yields:

T_{f}=20.06^{o}C

d)

For part d, we know that the amount of heat to be removed for the water to reach its original temperature is the same amount of energy you inputed with the difference that since the energy is being removed this means that it will be negative.

\Delta Q=-2.425kJ

3 0
2 years ago
Other questions:
  • On Mars, where air resistance is negligible, an astronaut drops a rock from a cliff and notes that the rock falls about d meters
    11·2 answers
  • A floating balloon can be formed when the substance helium is released from a compressed container into a flat rubber balloon. T
    9·2 answers
  • A solid spherical insulator has radius r = 2.5 cm, and carries a total positive charge q = 8 × 10-10 c distributed uniformly thr
    14·1 answer
  • Two vectors are presented as a=3.0i +5.0j and b=2.0i+4.0j find (a) a x b, ab (c) (a+b)b and (d) the component of a along the dir
    15·1 answer
  • What is the maximum negative displacement a dog could have if it started its motion at +3 m?
    9·1 answer
  • A professional driver drove a long linear route at an average speed of 30 miles per hour. Immediately after completing this driv
    12·2 answers
  • Waves are observed to splash upon the rocks at the shore every 6.0
    10·1 answer
  • You have a device that needs a voltage reference of 3.0 V, but you have only a 9.0 V battery. Fortunately, you also have several
    12·2 answers
  • Jocko the clown, whose mass is 60-Kg, stands on a skateboard. A 20-Kg ball is thrown at Jocko at 3m/s, and when he catches the b
    6·1 answer
  • Global Precipitation Measurement (GPM) is a tool scientists use to forecast weather. Which statements describe GPM? Select three
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!