answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elan Coil [88]
2 years ago
5

A cylindrical rod of steel (E = 207 GPa, 30 × 10 6 psi) having a yield strength of 310 MPa (45,000 psi) is to be subjected to a

load of 11,100 N (2500 lb f ). If the length of the rod is 500 mm (20.0 in.), what must be the diameter to allow an elongation of 0.38 mm (0.015 in.)?
Physics
1 answer:
Yanka [14]2 years ago
6 0

Answer:

Diameter of the cylinder will be d=2.998\times 10^4m

Explanation:

We have given young's modulus of steel E=207GPa=207\times 10^9Pa  

Change in length \Delta l=0.38mm

Length of rod l=500mm

Load F = 11100 KN

Strain is given by strain=\frac{\Delta l}{l}=\frac{0.38}{500}=7.6\times 10^{-4}

We know that young's modulus E=\frac{stress}{strain}

So 207\times 10^9=\frac{stress}{7.6\times 10^{-4}}

stress=1573.2\times 10^{-5}N/m^2

We know that stress =\frac{force}{artea }

So 1573.2\times 10^{-5}=\frac{11100\times 1000}{area}

area=7.055\times 10^{8}m^2

So \frac{\pi }{4}d^2=7.055\times 10^{8}

d=2.998\times 10^4m          

You might be interested in
Una manguera de agua de 1.3 cm de diametro es utilizada para llenar una cubeta de 24 Litros. Si la cubeta se llena en 48 s. A) ¿
Viefleur [7K]

Answer:

We must translate this:

a 1.3 cm diameter water hose is used to fill a 24-liter bucket. If the bucket is filled in 48 s.  

A) What is the speed with which the water leaves the hose?

B) if the diameter of the hose is reduced to 0.63 cm and assuming the same flow, what will be the speed of the water leaving the hose?

A) If the velocity of the water is Xcm/s

and the radius of the hose is equal to half its diameter, so it is 1.3cm/2

Then in one second we can considerate that a cylinder of:

V = pi*(1.3cm/2)^2*X cm^3 of water.

So we have that quantity in one second of flow.

where pi = 3.14

then in 48 seconds, the amount of water in the bucket is:

V = 48*pi*(1.3/2)^2*X = 24 L = 24,000 cm^3

Now we need to solve this for X.

48*3.14*(1.3/2)^2*X = 24000

63.679*x = 24000

x = 24000/63.679 = 376.89

So the velocity of the water is 376 cm per second.

B) if the diameter is 0.64cm, we have the equation:

48*3.14*(0.63/2)^2*x = 24000

14.955*X = 24000

X = 24000/14.955 = 1604.814 cm/s

6 0
2 years ago
A basketball is tossed upwards with a speed of 5.0\,\dfrac{\text m}{\text s}5.0 s m ​ 5, point, 0, start fraction, start text, m
Hatshy [7]

Answer:

The last one

Explanation:

4 0
2 years ago
A skier is moving down a snowy hill with an acceleration of 0.40 m/s2. The angle of the slope is 5.0∘ to the horizontal. What is
kirill115 [55]

Answer:

1.25377 m/s²

Explanation:

m = Mass of person

g = Acceleration due to gravity = 9.81 m/s²

\mu = Coefficient of friction

\theta = Slope

From Newton's second law

mgsin\theta-f=ma\\\Rightarrow mgsin\theta-\mu mgcos\theta=ma\\\Rightarrow \mu=\frac{gsin\theta-a}{gcos\theta}\\\Rightarrow \mu=\frac{9.81\times sin5-0.4}{9.81\times cos5}\\\Rightarrow \mu=0.04655

Applying \mu to the above equation and \theta=10^{\circ}

mgsin\theta-\mu mgcos\theta=ma\\\Rightarrow a=gsin\theta-\mu gcos\theta\\\Rightarrow a=9.81\times sin10-0.04655\times 9.81\times cos10\\\Rightarrow a=1.25377\ m/s^2

The acceleration of the same skier when she is moving down a hill is 1.25377 m/s²

3 0
2 years ago
What is the value of the composite constant (gmer2e), to be multiplied by the mass of the object mo in the equation above? expre
Bezzdna [24]

The solution would be like this for this specific problem:

 

 

F = (G Me Mo) / Re^2 

F / Mo = (G Me) / Re^2 

G = gravitational constant = 6.67384 * 10^-11 m3 kg-1 s-2 

Me = 5.972 * 10^24 kg 

Re^2 = (6.38 * 10^6)^2 m^2 = 40.7044 * 10^12 m^2 = 4.07044 * 10^13 m^2 

G Me / Re^2 = (6.67384 * 10-11 * 5.972 * 10^24) / 4.0704 * 10^13 = 9.7196 m/s^2 

9.7196 m/s^2 = acceleration due to Earth’s gravity 

Therefore, the value of the composite constant (Gme / r^2e) that is to be multiplied by the mass of the object mo in the equation above is 9.7196 m/s^2.

8 0
1 year ago
Read 2 more answers
Finally, you are ready to answer the main question. Cheetahs, the fastest of the great cats, can reach 50.0 miles/hourmiles/hour
slavikrds [6]

Answer:

The acceleration of the cheetahs is 10.1 m/s²

Explanation:

Hi there!

The equation of velocity of an object moving along a straight line with constant acceleration is the following:

v = v0 + a · t

Where:

v = velocity of the object at time t.

v0 = initial velocity.

a = acceleration.

t = time

We know that at t = 2.22 s, v = 50.0 mi/h. The initial velocity, v0, is zero.

Let's convert mi/h into m/s:

50.0 mi/h · (1609.3 m / 1 mi) · (1 h / 3600 s) = 22.4 m/s

Then, using the equation:

v = v0 + a · t

22.4 m/s = 0 m/s + a · 2.22 s

Solving for a:

22.4 m/s / 2.22 s = a

a = 10.1 m/s²

The acceleration of the cheetahs is 10.1 m/s²

5 0
2 years ago
Other questions:
  • A 4.00 kg rock is rolling 10.0m/s find its kinetic energy
    13·1 answer
  • a light bulb is 4.1 m from a surface. how much luminous flux must the bulb produce if the illuminance required is 22 lx?
    12·1 answer
  • A rock is thrown horizontally at a speed of 5.0 m/s from the top of a cliff 64.7 m high. The rock hits the ground 18.0 m from th
    14·2 answers
  • Three negative point charges q1 =-5 nC, q2 = -2 nC and q3 = -5 nC lie along a vertical line. The charge q2 lies exactly between
    8·1 answer
  • Step gently onto a bathroom scale, read the dial, and then jump from a chair onto the same scale.
    13·1 answer
  • Water is stored in a municipal water tank at a mean height of 25 m. If a faucet of diameter 1.2 cm is opened in a house at groun
    7·1 answer
  • Would an oil ship moving at a speed of 10km/h have more or less momentum than a car moving at a speed of 100km/h? Explain your a
    15·2 answers
  • An 80.0-kg man jumps from a height of 2.50 m onto a platform mounted on springs. As the springs compress, he pushes the platform
    10·1 answer
  • Adam observed properties of four different waves and recorded observations about the frequency and volume of each one in his cha
    10·1 answer
  • Rahul sees a flock of birds. He watches as the flying birds land in neat little rows on several power lines. Which change of sta
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!