Answer:
0.24 kgm²
Explanation:
= length of the bat = 81.3 cm = 0.813 m
= mass of the bat = 0.96 kg
= distance of the center of mass of bat from the axis of rotation = 55.9 cm = 0.559 m
= Period of oscillation = 1.35 sec
= moment of inertia of the bat
Period of oscillation is given as


= 0.24 kgm²
Answer:
Final temperature will be 438.076 K
Explanation:
We have given temperature
Volume 
As there is no heat transfer so this is an adiabatic process
For and adiabatic process 
Here 
So 

Answer:
To increase the maximum kinetic energy of electrons to 1.5 eV, it is necessary that ultraviolet radiation of 354 nm falls on the surface.
Explanation:
First, we have to calculate the work function of the element. The maximum kinetic energy as a function of the wavelength is given by:

Here h is the Planck's constant, c is the speed of light,
is the wavelength of the light and W the work function of the element:

Now, we calculate the wavelength for the new maximum kinetic energy:

This wavelength corresponds to ultraviolet radiation. So, to increase the maximum kinetic energy of electrons to 1.5 eV, it is necessary that ultraviolet radiation of 354 nm falls on the surface.
Answer:
155.38424 K
2.2721 kg/m³
Explanation:
= Pressure at reservoir = 10 atm
= Temperature at reservoir = 300 K
= Pressure at exit = 1 atm
= Temperature at exit
= Mass-specific gas constant = 287 J/kgK
= Specific heat ratio = 1.4 for air
For isentropic flow

The temperature of the flow at the exit is 155.38424 K
From the ideal equation density is given by

The density of the flow at the exit is 2.2721 kg/m³
Initially, the energies are:

At final point, the energies are:

Using conservation law of energy,
The equation is further simplified as:
