The type of waves used by bats are sound waves. Most of the species use their larynx to produce ultrasound waves in the frequency range of 20 to 200 kilohertz.
These sound waves are echoed, reflected, by surroundings, in this case food or prey. These reflections are received by the specialized receptor cells in the ears of bats. The reflections are analyzed by the brain to make an image.
Fun fact: The brain cells of bats are also specialized to better analyze the frequency of ultrasound used by the bat.
Answer:
false
explanation:
Well, electrons can be converted into a atomic number so if SE atomic number is 34 that means it has 34 electrons. AI has a atomic number of 13 meaning it has 13 electrons.
So the difference is that SE has more electrons then AI.
Hope this helped. :D
Answer with Explanation:
Concepts and reason
The concept to solve this problem is that if a capacitor is connected in a RC circuit then it allows the flow of charge through circuit only till it gets fully charged. Once the capacitor is charged it will not allow any charge or current to flow.
Opposite is the case with inductor in the RL circuit. According to Faraday's law an inductor develops an emf to oppose the voltage applied but once the flux change stops then the inductor behaves just like a normal wire as if no inductor is there.
In attached figure, resistor is connected in series to the capacitor.
As we considered
the voltage across the capacitor and
the voltage across the source.
Voltage across a resistor In RC circuit.

Voltage across a resistor In RL circuit.

Answer:
I = 16 kg*m²
Explanation:
Newton's second law for rotation
τ = I * α Formula (1)
where:
τ : It is the moment applied to the body. (Nxm)
I : it is the moment of inertia of the body with respect to the axis of rotation (kg*m²)
α : It is angular acceleration. (rad/s²)
Kinematics of the wheel
Equation of circular motion uniformly accelerated :
ωf = ω₀+ α*t Formula (2)
Where:
α : Angular acceleration (rad/s²)
ω₀ : Initial angular speed ( rad/s)
ωf : Final angular speed ( rad
t : time interval (rad)
Data
ω₀ = 0
ωf = 1.2 rad/s
t = 2 s
Angular acceleration of the wheel
We replace data in the formula (2):
ωf = ω₀+ α*t
1.2= 0+ α*(2)
α*(2) = 1.2
α = 1.2 / 2
α = 0.6 rad/s²
Magnitude of the net torque (τ )
τ = F *R
Where:
F = tangential force (N)
R = radio (m)
τ = 80 N *0.12 m
τ = 9.6 N *m
Rotational inertia of the wheel
We replace data in the formula (1):
τ = I * α
9.6 = I *(0.6
)
I = 9.6 / (0.6
)
I = 16 kg*m²