The intensity is defined as the ratio between the power emitted by the source and the area through which the power is calculated:

(1)
where
P is the power
A is the area
In our problem, the intensity is

. At a distance of r=6.0 m from the source, the area intercepted by the radiation (which propagates in all directions) is equal to the area of a sphere of radius r, so:

And so if we re-arrange (1) we find the power emitted by the source:
Answer:
The group of light rays is reflected back towards the focal point thereby producing a magnifying effect.
Explanation:
In the circular motion of the hammer, the centripetal force is given by

where m is the mass of the hammer, v its tangential speed and r is the distance from the center of the motion, i.e. the length of the hammer.
Using the data of the problem, we find:
Answer:
the thickness required of a masonry wall L = 375mm
Explanation:
The detailed steps and appropriate use of fourier's law of heat conduction is as shown in the attached file.
Answer:
457.81 Hz
Explanation:
From the question, it is stated that it is a question under Doppler effect.
As a result, we use this form
fo = (c + vo) / (c - vs) × fs
fo = observed frequency by observer =?
c = speed of sound = 332 m/s
vo = velocity of observer relative to source = 45 m/s
vs = velocity of source relative to observer = - 46 m/s ( it is taking a negative sign because the velocity of the source is in opposite direction to the observer).
fs = frequency of sound wave by source = 459 Hz
By substituting the the values to the equation, we have
fo = (332 + 45) / (332 - (-46)) × 459
fo = (377/ 332 + 46) × 459
fo = (377/ 378) × 459
fo = 0.9974 × 459
fo = 457.81 Hz