Answer:
The separation between the first two minima on either side is 0.63 degrees.
Explanation:
A diffraction experiment consists on passing monochromatic light trough a small single slit, at some distance a light diffraction pattern is projected on a screen. The diffraction pattern consists on intercalated dark and bright fringes that are symmetric respect the center of the screen, the angular positions of the dark fringes θn can be find using the equation:
with a the width of the slit, n the number of the minimum and λ the wavelength of the incident light. We should find the position of the n=1 and n=2 minima above the central maximum because symmetry the angular positions of n=-1 and n=-2 that are the angular position of the minima below the central maximum, then:
for the first minimum
solving for θ1:


for the second minimum:



So, the angular separation between them is the rest:


Thank you for posting your question here at brainly. Below is the answer:
sum of Mc = 0 = -Ay(4.2 + 3cos(59)) + (275)(2.1 + 3cos(59)) + M
<span>- Ay = (M + (275*(2.1 + 3cos(59)))/(4.2 + 3cos(59)) </span>
<span>sum of Ma = 0 = (-275)(2.1) - Cy(4.2 + 3cos(59)) + M </span>
<span>- Cy = (M - (275*2.1))/(4.2 + 3cos(59)) </span>
<span>Ay + Cy = 275 = ((M+1002.41)+(M-577.5))/(5.745) </span>
<span>= (2M + 424.91)/(5.745) </span>
<span>M = ((275*5.745) - 424.91)/2 </span>
<span>= 577.483 which rounds off to 577 </span>
<span>Is it maybe supposed to be Ay - Cy = 275</span>
Answer:
the direction that should be walked by Ricardo to go directly to Jane is 23.52 m, 24° east of south
Explanation:
given information:
Ricardo walks 27.0 m in a direction 60.0 ∘ west of north, thus
A= 27
Ax = 27 sin 60 = - 23.4
Ay = 27 cos 60 = 13.5
Jane walks 16.0 m in a direction 30.0 ∘ south of west, so
B = 16
Bx = 16 cos 30 = -13.9
By = 16 sin 30 = -8
the direction that should be walked by Ricardo to go directly to Jane
R = √A²+B² - (2ABcos60)
= √27²+16² - (2(27)(16)(cos 60))
= 23.52 m
now we can use the sines law to find the angle
tan θ = 
= By - Ay/Bx -Ax
= (-8 - 13.5)/(-13.9 - (-23.4))
θ = 90 - (-8 - 13.5)/(-13.9 - (-23.4))
= 24° east of south
Answer:
B_o = 1.013μT
Explanation:
To find B_o you take into account the formula for the emf:

where you used that A (area of the loop) is constant, an also the angle between the direction of B and the normal to A.
By applying the derivative you obtain:

when the emf is maximum the angle between B and the normal to A is zero, that is, cosθ = 1 or -1. Furthermore the cos function is 1 or -1. Hence:

hence, B_o = 1.013μT