answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zlopas [31]
1 year ago
14

A neutron star has a mass of 2.0 × 1030 kg (about the mass of our sun) and a radius of 5.0 × 103 m (about the height of a good-s

ized mountain). Suppose an object falls from rest near the surface of such a star. How fast would this object be moving after it had fallen a distance of 0.017 m? (Assume that the gravitational force is constant over the distance of the fall and that the star is not rotating.)
Physics
2 answers:
Elodia [21]1 year ago
7 0

Answer:

Velocity will be v=3.266\times 10^5m/sec

Explanation:

We have given mass of the star M=2\times 10^{30}kg[/tex}Radius of the star [tex]R=5\times 10^{3}m

Gravitational constant G=6.67\times 10^{-11}Nm^2/kg^2

We know that acceleration is given by a=\frac{GM}{R^2}=\frac{6.67\times 10^{-11}\times 2\times 10^{30}}{(5\times 10^3)^2}=5.33\times 10^{12}m/sec^2

Displacement is given as s = 0.017 m

From third equation of motion

v^2=u^2+2as

As initial velocity u = 0 m/sec

So v^2=0^2+2\times 5.33\times 10^{12}\times 0.017

v=3.266\times 10^5m/sec

laiz [17]1 year ago
5 0

Answer:

30298514.82 m/s

Explanation:

M = Mass of star = 2×10³ kg

r = Radius of star = 5×10³ m

G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²

t = Time taken

u = Initial velocity

v = Final velocity

s = Displacement

a = Acceleration

a=G\frac{M}{r^2}\\\Rightarrow a=6.67\times 10^{-11}\frac{2\times 10^{30}}{5\times 10^3}\\\Rightarrow a=2.7\times 10^{16}\ m/s^2

v^2-u^2=2as\\\Rightarrow v=\sqrt{2as+u^2}\\\Rightarrow v=\sqrt{2\times 2.7\times 10^{16}\times 0.017+0^2}\\\Rightarrow v=30298514.82\ m/s

The object would be moving at a velocity of 30298514.82 m/s

You might be interested in
Dylan has two cubes of iron. The larger cube has twice the mass of the smaller cube. He measures the smaller cube. Its mass is 2
liubo4ka [24]

Answer:

The volume of the larger cube is 5.08 g/cm³.

Explanation:

Given that,

Mass of smaller cube = 20 g

Density of smaller cube \rho= 7.87 g/cm^2

Dylan has two cubes of iron.

The larger cube has twice the mass of the smaller cube.

M_{l}=2m_{s}

Density is same for both cubes because both cubes are same material.

The density is equal to the mass divided by the volume.

\rho=\dfrac{m}{V}

V=\dfrac{m}{\rho}

Where, V = volume

m = mass

\rho=density

We need to calculate the volume of smaller mass

The volume of smaller mass

V_{s}=\dfrac{m_{s}}{\rho_{s}}

V_{s}=\dfrac{20}{7.87}

V_{s}=2.54\ cm^3

Now, We need to calculate the volume of large cube

V_{l}=\dfrac{m_{l}}{\rho_{l}}

V_{l}=\dfrac{2\times20}{7.87}

V_{l}=5.08\ g/cm^3

Hence, The volume of the larger cube is 5.08 g/cm³.

8 0
2 years ago
A beam of electrons is sent horizontally down the axis of a tube to strike a fluorescent screen at the end of the tube. On the w
slamgirl [31]

Answer:

The answer is 3.

Explanation:

The answer to this question can be found by applying the right hand rule for which the pointer finger is in the direction of the electron movement, the thumb is pointing in the direction of the magnetic field, so the effect that this will have on the electrons is the direction that the middle finger points in which is right in this example.

So as a result of the magnetic field directed vertically downwards which is at a right angle with the electron beams, the electrons will move to the right and the spot will be deflected to the right of the screen when looking from the electron source.

I hope this answer helps.

4 0
2 years ago
The initial velocity of a 4.0-kg box is 11 m/s, due west. After the box slides 4.0 m horizontally, its speed is 1.5 m/s. Determi
ankoles [38]

Answer:

F = - 59.375 N

Explanation:

GIVEN DATA:

Initial velocity = 11 m/s

final velocity = 1.5 m/s

let force be F

work done =  mass* F = 4*F

we know that

Change in kinetic energy = work done

kinetic energy = = \frac{1}{2}*m*(v_{2}^{2}-v_{1}^{2})

kinetic energy = = \frac{1}{2}*4*(1.5^{2}-11^{2}) = -237.5 kg m/s2

-237.5 = 4*F

F = - 59.375 N

7 0
2 years ago
The coefficient of friction between the 2-lb block and the surface is μ=0.2. The block has an initial speed of Vβ =6 ft/s and is
Taya2010 [7]

Answer:

x = 0.0685 m

Explanation:

In this exercise we can use the relationship between work and energy conservation

            W = ΔEm

Where the work is

             W = F x

The energy can be found in two points

Initial. Just when the block with its spring spring touches the other spring

           Em₀ = K = ½ m v²

Final. When the system is at rest

            Em_{f} = K_{e1}b +K_{e2} = ½ k₁ x² + ½ k₂ x²

We can find strength with Newton's second law

            ∑ F = F - fr

Axis y

           N- W = 0

           N = W

The friction force has the equation

          fr = μ N

          fr = μ W

  The job

         W = (F – μ W) x

We substitute in the equation

            (F - μ W) x = ½ m v² - (½ k₁ x² + ½ k₂ x²)

           ½ x² (k₁ + k₂) + (F - μ W) x - ½ m v² = 0

We substitute values ​​and solve

           ½ x² (20 + 40) + (15 -0.2 2) x - ½ (2/32) 6² = 0

         x² 30 + 14.4 x - 1,125 = 0

        x² + 0.48 x - 0.0375 = 0

           

We solve the second degree equation

        x = [-0.48 ±√(0.48 2 + 4 0.0375)] / 2

        x = [-0.48 ± 0.617] / 2

        x₁ = 0.0685 m

        x₂ = -0.549 m

The first result results from compression of the spring and the second torque elongation.

The result of the problem is x = 0.0685 m

4 0
2 years ago
A metallic sphere of radius 2.0 cm is charged with +5.0-μC+5.0-μC charge, which spreads on the surface of the sphere uniformly.
sladkih [1.3K]

Answer:

Explanation:

Potential due to a charged metallic sphere having charge Q and radius r on its surface will be

v = k Q / r . On the surface and inside the metallic sphere , potential is the same . Outside the sphere , at a distance R from the centre  potential is

v = k Q / R

a ) On the surface of the shell , potential due to positive charge is

V₁ = \frac{9\times10^9\times5\times10^{-6}}{6\times10^{-2}}

On the surface of the shell , potential due to negative  charge is

V₁ = \frac{- 9\times10^9\times5\times10^{-6}}{6\times10^{-2}}

Total potential will be zero . they will cancel each other.

b ) On the surface of the sphere potential

= \frac{9\times10^9\times5\times10^{-6}}{2\times10^{-2}}

= 22.5 x 10⁵ V

On the surface of the sphere potential due to outer shell

= \frac{9\times10^9\times5\times10^{-6}}{5\times10^{-2}}

= -9 x 10⁵

Total potential

=( 22.5 - 9 ) x 10⁵

= 13.5 x 10⁵ V

c ) In the space between the two , potential will depend upon the distance of the point from the common centre .

d ) Inside the sphere , potential will be same as that on the surface that is

13.5 x 10⁵ V.

e ) Outside the shell , potential due to both positive and negative charge will cancel each other so it will be zero.

5 0
1 year ago
Other questions:
  • What happens to the period of a spring-cart system motion when the system is in orbit inside the international space station?
    9·1 answer
  • What is the factor involved in increasing an object’s inertia?
    14·1 answer
  • A 72 kg sled Is pulled forward from rest by a snowmobile and accelerates at 2 m/s squared forward for five seconds. The force of
    7·1 answer
  • Drag the tiles to the correct boxes to complete the pairs. Match the sentences with the steps of the scientific method
    15·1 answer
  • A stone is thrown horizontally from 2.4m above the ground at 35m/s. The wall is 14m away and 1m high.At what height the stone wi
    7·1 answer
  • Based on what you've learned about heat energy, explain the factors that would determine how quickly a piece of meat cooked on a
    9·2 answers
  • Which statement about images is correct? a) A virtual image cannot be formed on a screen. b) A virtual image cannot be viewed by
    13·1 answer
  • How could the combustibility of a substance influence how the substances used
    11·1 answer
  • A time-dependent but otherwise uniform magnetic field of magnitude B0(t) is confined in a cylindrical region of radius 6.5 cm. I
    14·1 answer
  • Classes are canceled due to snow, so you take advantage of the extra time to conduct some physics experiments. You fasten a larg
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!