Answer:
Explanation:
Let the force required be F . It is applied at the top of the box . The box is likely to turn about a corner . Torque of this force about this corner
= F x 2
This torque will try to turn the box . On the other hand the weight which is acting at CM will create a torque about the same corner . This torque will try to prevent the box to turn around the corner.
This torque of weight
= 100 x 1
= 100 pound ft.
For equilibrium
Torque of F = torque of weight.
F x 2 = 100
F = 50 pounds .
Answer:
1320336992.2512 m²
1320.33 kilometers or 509.79 miles
Explanation:
Energy transferred by the sun

Energy required by the United States is
(assumed)
Power

Area

Area of the solar collector would be 1320336992.2512 m²
Converting to km²


Converting to mi²


Each side of the square would be 1320.33 kilometers or 509.79 miles
Answer:Thus, The magnetic field around a current-carrying wire is <u><em>directly</em></u> proportional to the current and <u><em>inversely</em></u> proportional to the distance from the wire. If the current triples while the distance doubles, the strength of the magnetic field increases by <u><em>one and half (1.5)</em></u> times.
Explanation:
Magnetic field around a long current carrying wire is given by

where B= magnetic field
permeability of free space
I= current in the long wire and
r= distance from the current carrying wire
Thus, The magnetic field around a current-carrying wire is <u><em>directly</em></u> proportional to the current and <u><em>inversely</em></u> proportional to the distance from the wire.
Now if I'=3I and r'=2r then magnetic field B' is given by

Thus If the current triples while the distance doubles, the strength of the magnetic field increases by <u><em>one and half (1.5)</em></u> times.
Answer:
The amount of gas that is to be released in the first second in other to attain an acceleration of 27.0 m/s2 is

Explanation:
From the question we are told that
The mass of the rocket is m = 6300 kg
The velocity at gas is being ejected is u = 2000 m/s
The initial acceleration desired is 
The time taken for the gas to be ejected is t = 1 s
Generally this desired acceleration is mathematically represented as

Here
is the rate at which gas is being ejected with respect to time
Substituting values

=> 
=> 
=> 
=> 
Answer:
Explanation:
40 divided by 10 then which would equal 4. Add the 1.0 , 2 ,and 15 together. Then multply the 60 by 18.0 after you are done dividing the answer is 3 with a remainder of 6.