answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
IRISSAK [1]
2 years ago
13

Packages having a mass of 6 kgkg slide down a smooth chute and land horizontally with a speed of 3 m/sm/s on the surface of a co

nveyor belt. If the coefficient of kinetic friction between the belt and a package is
Physics
1 answer:
nalin [4]2 years ago
5 0

Answer:

t = 1.02 s

Explanation:

The computation of the time required is shown below:

The package speed for belt is

= 3 -  1

= 2 m/s

Moreover, the decelerative force would be acted on the block i.e u.m.g

So, the decelerative produced

= 0.2 × 9.81

= 1.962 m/s^2

And, final velocity = 0

v = u - at

here

V = 0 = final velocity

 u = 2 m/s

so,

0 = 2 - 1.962 × t

t = 1.02 s

You might be interested in
"The predictions of Einstein’s Theory of General Relativity were tested on a double pulsar system in January of 2004. His equati
Rasek [7]

Answer:

99.95%

Explanation:

A double pulsar system named PSR J0737-3039A/B  in Puppis constellation was discovered in the year 2003. Pulsars are second most densest object in the universe after black holes and they emit radio waves at regular intervals. This pair presented a great and natural setup to test the Theory of General Relativity presented by Einstein in 1915. In this theory Einstein had presented a set of equations on how the space-time fabric will be curved because of the very dense objects such as Neutron stars. It also predicted how the gravitational waves are created because of stars orbiting each other.

A team of astrophysicists led by Michael Kramer, conducted a study on how these gravitational waves will impact the time in which the radio waves emitted by pulsars will reach Earth. The result of the study proved the theory of General Relativity to be accurate up to 99.95%.

8 0
2 years ago
A baseball of mass m = 0.49 kg is dropped from a height h1 = 2.25 m. It bounces from the concrete below and returns to a final h
Brilliant_brown [7]

Answer:

Explanation:

Impulse = change in momentum

mv - mu , v and u are final and initial velocity during impact at surface

For downward motion of baseball

v² = u² + 2gh₁

= 2 x 9.8 x 2.25

v = 6.64 m / s

It becomes initial velocity during impact .

For body going upwards

v² = u² - 2gh₂

u² = 2 x 9.8 x 1.38

u = 5.2 m / s

This becomes final velocity after impact

change in momentum

m ( final velocity - initial velocity )

.49 ( 5.2 - 6.64 )

= .7056 N.s.

Impulse by floor in upward direction

= .7056 N.s

6 0
2 years ago
What is the torque τb about axis b due to the force f⃗ ? (b is the point at cartesian coordinates (0,b), located a distance b fr
yKpoI14uk [10]
Check the attached file for the solution.

8 0
2 years ago
Temperature difference in the body. The surface temperature of the body is normally about 7.00 ∘C lower than the internal temper
egoroff_w [7]

Answer:

7 K.

12. 6 °F

Explanation:

Convert the individual temperatures to Kelvin (Surface temperature and internal temperature) before calculating the temperature difference of the body,

Let The Surface temperature Be = X °C

And the internal Temperature will be = (X + 7) °C

Converting the surface and the internal temperature to temperature in Kelvin

Surface Temperature of the body (K) = (X + 273) K

Internal Temperature of the body (K) = (X + 7) + 273 = (X + 280) K.

∴ Temperature difference of the body (K) = Internal temperature(K) - surface temperature(K) = (X + 279) - (X + 280)

   = X - X + 280 - 273 = 7 K.

∴Temperature difference of the body (K) = 7 K

Also for Fahrenheit, Convert the individual temperatures (Surface temperature and internal temperature) to Fahrenheit before calculating the temperature difference of the body.

We use , F = 1.8C + 32

Where C = temperature in Celsius.

also,

Let The Surface temperature Be = X °C

And the internal Temperature of the body will be = (X + 7) °C

Converting to Fahrenheit

Surface Temperature of the body = 1.8X + 32 °F

Internal Temperature of the body = 1.8(X+7) + 32 = 1.8X + 12.6 + 32

Internal Temperature of the body = 1.8X + 44.6 °F

∴ The temperature difference of the body (°F) = Internal temperature(°F) - surface temperature(°F) = (1.8X + 44.6) - (1.8X + 32)

      surface temperature(°F) = 1.8X - 1.8X  + 44.6 - 32

       surface temperature(°F) = 12. 6 °F.

   

3 0
2 years ago
Cori uses 475 J of energy from her muscles to push a bar 1 m on a weight machine at the gym. Between the bar’s motion , the heat
dimulka [17.4K]

Answer:

475

Explanation:

Cori does not exert any more force than 475 J, so 475 is the answer.

5 0
2 years ago
Read 2 more answers
Other questions:
  • The energy yield of a nuclear weapon is often defined in terms of the equivalent mass of a conventional explosive. 1 ton of a co
    14·1 answer
  • What visible signs indicate a precipitation reaction when two solutions are mixed?
    6·1 answer
  • A pyrotechnical releases a 3 kg firecracker from rest. at t=0.4 s, the firecracker is moving downward with a speed 4 m/s. At the
    8·1 answer
  • Which of the following is NOT a good way to reduce fuel consumption?
    15·2 answers
  • Maria throws an apple vertically upward from a height of 1.3 m with an initial velocity of +2.8 m/s. Will the apple reach a frie
    13·1 answer
  • A 120-g block of copper is taken from a kiln and quickly placed into a beaker of negligible heat capacity containing 300 g of wa
    14·2 answers
  • One of the main factors driving improvements in the cost and complexity of integrated circuits (ICs) is improvements in photolit
    6·1 answer
  • 16) A wheel of moment of inertia of 5.00 kg-m2 starts from rest and accelerates under a constant torque of 3.00 N-m for 8.00 s.
    15·2 answers
  • An astronaut drops a feather from 1.2 m above
    5·1 answer
  • Which statement accurately describes the motion of the object in the graph above over 10 seconds? Group of answer choices The ob
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!