When the ball has left your hand and is flying on its own, its kinetic energy is
KE = (1/2) (mass) (speed²)
KE = (1/2) (0.145 kg) (25 m/s)²
KE = (0.0725 kg) (625 m²/s²)
<em>KE = 45.3 Joules</em>
If the baseball doesn't have rocket engines on it, or a hamster inside running on a treadmill that turns a propeller on the outside, then there's only one other place where that kinetic energy could come from: It MUST have come from the hand that threw the ball. The hand would have needed to do <em>45.3 J</em> of work on the ball before releasing it.
To solve this problem, we will start by defining each of the variables given and proceed to find the modulus of elasticity of the object. We will calculate the deformation per unit of elastic volume and finally we will calculate the net energy of the system. Let's start defining the variables
Yield Strength of the metal specimen

Yield Strain of the Specimen

Diameter of the test-specimen

Gage length of the Specimen

Modulus of elasticity



Strain energy per unit volume at the elastic limit is



Considering that the net strain energy of the sample is




Therefore the net strain energy of the sample is 
To calculate the specific heat capacity of an object or substance, we can use the formula
c = E / m△T
Where
c as the specific heat capacity,
E as the energy applied (assume no heat loss to surroundings),
m as mass and
△T as the energy change.
Now just substitute the numbers given into the equation.
c = 2000 / 2 x 5
c = 2000/ 10
c = 200
Therefore we can conclude that the specific heat capacity of the block is 200 Jkg^-1°C^-1
Answer:
hydrogen bridge
Explanation:
Joule's relationship to heat and temperature is true for all materials where we assume that interatomic forces are linear, when atoms separate these forces decrease. There is a point where the separation between atoms is enough that thermal agitation can separate the molecules and there is a change of state, generally from solid to liquid and from liquid to vapor. When these changes of state are occurring all the energy supplied is used to break the links, so the temperature does not change.
In the specific case of water, there is a bond called a hydrogen bridge that breaks around 4ºC, therefore, at this temperature there is a deviation from the curve since this link is being broken, this does not lead to a change of macroscopic state.
For the other temperatures the water behaves like the other bodies.
A boat is floating in a small pond. the boat then sinks so that it is completely submerged. what happens to the level of the pond?
It increases!