answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ss7ja [257]
2 years ago
8

7. Imagine you are pushing a 15 kg cart full of 25 kg of bottled water up a 10o ramp. If the coefficient of friction is 0.02, wh

at is the friction force you must overcome to push the cart up the ramp
Physics
1 answer:
pentagon [3]2 years ago
4 0

Answer:

The frictional force needed to overcome the cart is 4.83N

Explanation:

The frictional force can be obtained using the following formula:

F= \mu R

where \mu is the coefficient of friction = 0.02

R = Normal reaction of the load = mgcos\theta = 25 \times 9.81 \times cos 10 = 241.52N

Now that we have the necessary parameters that we can place into the equation, we can now go ahead and make our substitutions, to get the value of F.

F=0.02 \times 241.52N

F = 4.83 N

Hence, the frictional force needed to overcome the cart is 4.83N

You might be interested in
Scotesia swims from the north end to the south end of a 50.0 m pool in 20.0 s. As she begins to make the return trip , Sean, who
slega [8]

Answer:

a) 2.5m/s

b) 0.91m/s

c) 0m/s

Explanation:

Average velocity can be said to be the ratio of the displacement with respect to time.

Average speed on the other hand is the ratio of distance in relation to time

Thus, to get the average velocity for the first half of the swim

V(average) = displacement of first trip/time taken on the trip

V(average) = 50/20

V(average) = 2.5m/s

Average velocity for the second half of the swim will be calculated in like manner, thus,

V(average) = 50/55

V(average) = 0.91m/s

Average velocity for the round trip will then be

V(average) = 0/75, [50+25]

V(average) = 0m/s

3 0
2 years ago
Gravity is the force that keeps us on the Earth. It pulls us towards the center of the Earth. If you were to move from the surfa
Nikitich [7]
<h2>Answer: B. Gravitational potential energy </h2>

Explanation:

<em>The gravitational potential energy is the energy that a body or object possesses, due to its position in a gravitational field. </em>

That is why this energy depends on the relative height of an object with respect to some point of reference and associated with the gravitational force.

In the case of the <u>Earth</u>, in which  <u>the gravitational field is considered constant</u>, the value of the gravitational potential energy U_{p} will be:

U_{p}=mgh  

Where m is the mass of the object, g the acceleration due gravity and h the height of the object.

As we can see, the value of U_{p} is directly proportional to the height.

6 0
2 years ago
luggage handler pulls a 20.0 kg suitcase up a ramp inclined at 34.0 ∘ above the horizontal by a force F⃗ of magnitude 165 N that
Andreas93 [3]

Answer:

a)  W = 643.5 J, b) W = -427.4 J  

Explanation:

a) Work is defined by

       W = F. x = F x cos θ

in this case they ask us for the work done by the external force F = 165 N parallel to the ramp, therefore the angle between this force and the displacement is zero

       W = F x

let's calculate

       W = 165  3.9

        W = 643.5 J

b) the work of the gravitational force, which is the weight of the body, in ramp problems the coordinate system is one axis parallel to the plane and the other perpendicular, let's use trigonometry to decompose the weight in these two axes

       sin θ = Wₓ / W

       cos θ = Wy / W

        Wₓ = W sinθ = mg sin θ

        Wy = W cos θ

the work carried out by each of these components is even Wₓ, it has to be antiparallel to the displacement, so the angle is zero

      W = Wₓ x cos 180

      W = - mg sin 34  x

     

let's calculate

       W = -20 9.8 sin 34 3.9

        W = -427.4 J

The work done by the component perpendicular to the plane is ero because the angle between the displacement and the weight component is 90º, so the cosine is zero.

3 0
2 years ago
A firecracker breaks up into several pieces, one of which has a mass of 200 g and flies off along the x-axis with a speed of 82.
MakcuM [25]

Answer:

The magnitude of the total momentum is 21.2 kg m/s and its direction is 39.5° from the x-axis.

Explanation:

Hi there!

The total momentum is calculated as the sum of the momenta of the pieces.

The momentum of each piece is calculated as follows:

p = m · v

Where:

p = momentum.

m =  mass.

v = velocity.

The momentum is a vector. The 200 g-piece flies along the x-axis then, its momentum will be:

p = (m · v, 0)

p = (0.200 kg · 82.0 m/s, 0)

p = (16.4 kg m/s, 0)

The 300 g-piece flies along the y-axis. Its momentum vector will be:

p =(0, m · v)

p = (0, 0.300 kg · 45.0 m/s)

p = (0, 13.5 kg m/s)

The total momentum is the sum of each momentum:

Total momentum = (16.4 kg m/s, 0) + (0, 13.5 kg m/s)

Total momentum = (16.4 kg m/s + 0, 0 + 13.5 kg m/s)

Total momentum = (16.4 kg m/s, 13.5 kg m/s)

The magnitude of the total momentum is calculated as follows:

|p| = \sqrt{(16.4 kgm/s)^2+(13.5 kg m/s)^2}= 21.2 kg m/s

The direction of the momentum vector is calculated using trigonometry:

cos θ = px/p

Where px is the horizontal component of the total momentum and p is the magnitude of the total momentum.

cos θ = 16.4 kg m/s / 21.2 kg m/s

θ = 39.3  (39.5° if we do not round the magnitude of the total momentum)

Then, the magnitude of the total momentum is 21.2 kg m/s and its direction is 39.5° from the x-axis.

 

6 0
2 years ago
Consider two adjacent states, S1 and S2, that wish to control particulate emissions from power plants and cement plants; New Jer
natka813 [3]

Answer:

a. 7500

b. Yes

c. 2500

d. 7500

Explanation:

Please see attachment

7 0
2 years ago
Other questions:
  • In the metric system, the appropriate unit for weight is the _____. gram newton newton/cm2 gram/cm3
    12·1 answer
  • A catcher stops a 0.15-kg ball traveling at 40 m/s in a distance of 20 cm. what is the magnitude of the average force that the b
    10·2 answers
  • Lydia is often described as having a positive outlook on life. She assumes the best of people and situations. Lydia exemplifies
    14·2 answers
  • The use of air bags in cars reduces the force of impact by a factor of 110.(The resulting force is only as great.) What can be s
    15·2 answers
  • A large ant is standing on the middle of a circus tightrope that is stretched with tension Ts. The rope has mass per unit length
    15·1 answer
  • Elena (60.0 kg) and Madison (65.0 kg) are ice-skating at the Rockefeller ice rink in New Yok city. Their friend Tanner sees Elen
    7·1 answer
  • A watermelon is thrown down from a skyscraper with a speed of 7.0\,\dfrac{\text m}{\text s}7.0 s m ​ 7, point, 0, space, start f
    7·2 answers
  • An object starts from rest and slides with negligible friction down an air track tipped at an angle theta from the horizontal. A
    6·1 answer
  • Two identical conducting spheres, A and B, sit atop insulating stands. When they are touched, 1.51 × 1013 electrons flow from sp
    8·1 answer
  • A student sorted mineral samples into two groups: dull and shiny. Which of the following properties did the student use to sort
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!