answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Naddika [18.5K]
1 year ago
5

In a 5000 m race, the athletes run 12 1/2 laps; each lap is 400 m.Kara runs the race at a constant pace and finishes in 17.9 min

.Hannah runs the race in a blistering 15.3 min, so fast that she actually passes Kara during the race. How many laps has Hannah run when she passes Kara?
Physics
1 answer:
Ksju [112]1 year ago
3 0

Answer:

No. of laps of Hannah are 7 (approx).

Solution:

According to the question:

The total distance to be covered, D = 5000 m

The distance for each lap, x = 400 m

Time taken by Kara, t_{K} = 17.9 min = 17.9\times 60 = 1074 s

Time taken by Hannah, t_{H} = 15.3 min = 15.3\times 60 = 918 s

Now, the speed of Kara and Hannah can be calculated respectively as:

v_{K} = \frac{D}{t_{K}} = \frac{5000}{1074} = 4.65 m/s

v_{H} = \frac{D}{t_{H}} = \frac{5000}{918} = 5.45 m/s

Time taken in each lap is given by:

(v_{H} - v_{K})t = x

(5.45 - 4.65)\times t = 400

t = \frac{400}{0.8}

t = 500 s

So, Distance covered by Hannah in 't' sec is given by:

d_{H} = v_{H}\times t

d_{H} = 5.45\times 500 = 2725 m

No. of laps taken by Hannah when she passes Kara:

n_{H} = \frac{d_{H}}{x}

n_{H} = \frac{2725}{400} = 6.8 ≈ 7 laps

You might be interested in
Write the equivalent formulas for velocity, acceleration, and force using the relationships covered for UCM, Newton’s Laws, and
yKpoI14uk [10]

Answer:

The newton’s second law is F=ma

The Gravitational force is F=\dfrac{Gm_{1}m_{2}}{r^2}

Explanation:

Given that,

The equivalent formulas for velocity, acceleration, and force using the relationships covered for UCM, Newton’s Laws, and Gravitation.

We know that,

Velocity :

The velocity is equal to the rate of position of the object.

v=\dfrac{dx}{dt}....(I)

Acceleration :

The acceleration is equal to the rate of velocity of the object.

a=\dfrac{dv}{dt}....(II)

Newton’s second Laws

The force is equal to the change in momentum.

In mathematically,

F=\dfrac{d(p)}{dt}

Put the value of p

F=\dfrac{d(mv)}{dt}

F=m\dfrac{dv}{dt}

Put the value from equation (II)

F=ma

This is newton’s second laws.

Gravitational force :

The force is equal to the product of mass of objects and divided by square of distance.

In mathematically,

F=\dfrac{Gm_{1}m_{2}}{r^2}

Where, m₁₂ = mass of first object

m= mass of second object

r = distance between both objects

Hence, The newton’s second law is F=ma

The Gravitational force is F=\dfrac{Gm_{1}m_{2}}{r^2}

3 0
2 years ago
An aluminum "12 gauge" wire has a diameter d of 0.205 centimeters. The resistivity ρ of aluminum is 2.75×10−8 ohm-meters. The el
Tresset [83]

Complete Question

An aluminum "12 gauge" wire has a diameter d of 0.205 centimeters. The resistivity ρ of aluminum is 2.75×10−8 ohm-meters. The electric field in the wire changes with time as E(t)=0.0004t2−0.0001t+0.0004 newtons per coulomb, where time is measured in seconds.

I = 1.2 A at time 5 secs.

Find the charge Q passing through a cross-section of the conductor between time 0 seconds and time 5 seconds.

Answer:

The charge is  Q =2.094 C

Explanation:

From the question we are told that

    The diameter of the wire is  d =  0.205cm = 0.00205 \ m

     The radius of  the wire is  r =  \frac{0.00205}{2} = 0.001025  \ m

     The resistivity of aluminum is 2.75*10^{-8} \ ohm-meters.

       The electric field change is mathematically defied as

         E (t) =  0.0004t^2 - 0.0001 +0.0004

     

Generally the charge is  mathematically represented as

       Q = \int\limits^{t}_{0} {\frac{A}{\rho} E(t) } \, dt

Where A is the area which is mathematically represented as

       A =  \pi r^2 =  (3.142 * (0.001025^2)) = 3.30*10^{-6} \ m^2

 So

       \frac{A}{\rho} =  \frac{3.3 *10^{-6}}{2.75 *10^{-8}} =  120.03 \ m / \Omega

Therefore

      Q = 120 \int\limits^{t}_{0} { E(t) } \, dt

substituting values

      Q = 120 \int\limits^{t}_{0} { [ 0.0004t^2 - 0.0001t +0.0004] } \, dt

     Q = 120 [ \frac{0.0004t^3 }{3} - \frac{0.0001 t^2}{2} +0.0004t] }  \left | t} \atop {0}} \right.

From the question we are told that t =  5 sec

           Q = 120 [ \frac{0.0004t^3 }{3} - \frac{0.0001 t^2}{2} +0.0004t] }  \left | 5} \atop {0}} \right.

          Q = 120 [ \frac{0.0004(5)^3 }{3} - \frac{0.0001 (5)^2}{2} +0.0004(5)] }

         Q =2.094 C

     

5 0
2 years ago
A 10.0 cm3 sample of copper has a mass of 89.6
Romashka-Z-Leto [24]
Density is mass divides by volume, so
89.6g / 10cm^3 =8.96g /cm^3

*cm^3 is a standard unit of volume*
4 0
2 years ago
Football player A has a mass of 210 pounds and is running at a rate of 5.0 mi/hr. He collides with player B. Player B has a mass
Naddika [18.5K]

The equation for momentum is p = mv where p is the omentum, m is the mass and v is the velocity. Calculating the momentum for each football player, player A will have a momentum of 1050 lb-mi/h and player B will have a momentum of 570 lb-mi/h. Therefore, momentum of player A is greater than that of player B.

6 0
2 years ago
Read 2 more answers
A pillow is thrown downward with an initial speed of 6 m/s.
Yuri [45]

Given :

Initial velocity, u = -6 m/s.

Time taken, t = 4 seconds.

Acceleration due to gravity, g = -9.8\ m/s^2.( Here negative sign means downward direction )

To Find :

Velocity after 4 seconds.

Solution :

By equation of motion.

v = u + at

Here , a = g.

v = u + gt

v = -6 + (-9.8)×4

v = -6 + (-39.2)

v = -45.2 m/s

Therefore, velocity after 4 seconds is -45.2 m/s.

Hence, this is the required solution.

8 0
2 years ago
Other questions:
  • Whenever important physicists are discussed, Galileo Galilei, Isaac Newton, and Albert Einstein seem get the most attention. How
    13·1 answer
  • A jogger runs 10.0 blocks do east, 5.0 blocks due South, and another two. Zero blocks do east. Assume all blocks are equal size,
    13·1 answer
  • Rank the following situations according to the magnitude of the impulse of the net force, from largest value to smallest value.
    6·1 answer
  • A hockey puck of mass m traveling along the x axis at 4.5 m/s hits another identical hockey puck at rest. If after the collision
    14·1 answer
  • A majorette in the Rose Bowl Parade tosses a baton into the air with an initial angular velocity of 2.5 rev/s. If the baton unde
    11·1 answer
  • 16. A 7500 kg 18-wheeler traveling at 20 m/s exits onto the runaway truck ramp on the freeway.
    5·1 answer
  • Block 1 and Block 2 have the same mass, m, and are released from the top of two inclined planes of the same height making 30 deg
    8·1 answer
  • Lizette works in her school’s vegetable garden. Every Tuesday, she pulls weeds for 15 minutes. Weeding seems like a never-ending
    15·2 answers
  • Starting at t = 0 a net external force in the +x-direction is applied to an object that has mass 5.00 kg. A graph of the force a
    7·1 answer
  • Which statement accurately describes the motion of the object in the graph above over 10 seconds? Group of answer choices The ob
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!