The two systems that work together to deliver oxygen are D, respiratory and cardiovascular
The roadway with the highest number of hazards is <span>city streets</span>
Complete Question
For each of the following scenarios, describe the force providing the centripetal force for the motion:
a. a car making a turn
b. a child swinging around a pole
c. a person sitting on a bench facing the center of a carousel
d. a rock swinging on a string
e. the Earth orbiting the Sun.
Answer:
Considering a
The force providing the centripetal force is the frictional force on the tires \
i.e 
where
is the coefficient of static friction
Considering b
The force providing the centripetal force is the force experienced by the boys hand on the pole
Considering c
The force providing the centripetal force is the normal from the bench due to the boys weight
Considering d
The force providing the centripetal force is the tension on the string
Considering e
The force providing the centripetal force is the force of gravity between the earth and the sun
Explanation:
Answer:
The distance between the earth and the star is increasing.
Explanation:
When we observe an object and its electromagnetic radiation has been displaced to blue, it means that it is getting closer to us, causing the light waves it emits to get closer together and its wavelength to decrease towards blue, this is knowm as blueshift.
On the contrary, when an object is rapidly moving away from us, the light waves or electromagnetic radiation it emits have been stretched from their normal wavelength to a longer wavelength, towards the red part of the spectrum. This is known as redshift.
This phenomenon of changes in wavelength and frequency due to movement (whether the source approaches or moves away) is described by the Doppler effect.
So for this case because the light we perceive from the star has moved to the red part of the visible spectrum, we can conclude that it is moving away from the earth, and that the distance between the star and the earth is increasing.
Answer:
No. of laps of Hannah are 7 (approx).
Solution:
According to the question:
The total distance to be covered, D = 5000 m
The distance for each lap, x = 400 m
Time taken by Kara, 
Time taken by Hannah, 
Now, the speed of Kara and Hannah can be calculated respectively as:


Time taken in each lap is given by:



t = 500 s
So, Distance covered by Hannah in 't' sec is given by:


No. of laps taken by Hannah when she passes Kara:

≈ 7 laps