<u>Answer</u>
672,000 Joules
<u>Explanation</u>
Gravitational potential energy (P.E) is the energy possessed by a body that is at a potential height from the ground.
IT is calculated by the formula;
P.E = mgh
Where m ⇒ mass
g ⇒ acceleration due to gravity
h ⇒ height from trhe ground.
P.E = 1200 × 1.6 × 350
= 672,000 Joules.
Answer:
The amplitude of the eardrum's oscillation is 6.65×10^-13 m.
Explanation:
Given data:
The sound has a frequency of 262 Hz
The sound level is 84 dB
The air density is 1.21 kg/m^3
The speed of sound is 346 m/s
Solution:
As, Intensity of sound is given by,
I = Io×10^(s/10 db)
I = 2×π^2×ρ×v×f^2×Sm^2
Thus,
Sm = √(Io×10^(s/10 db)) / √( 2×π^2×ρ×v×f^2)
Now, put the values,
Sm = √( 10^-12 × 10^(84/10) ) / √( 2×(3.14)^2×1.21×346×(262)^2 )
Sm = √(2.51×10^-4 / 5.66×10^8)
Sm = √0.443×10^-12
Sm = 6.65×10^-13 m.
If Kai takes the burger off of the grill and puts cheese on it, it melts because the burger still is hot from being on the grill. The heat in and on the burger doesn’t go away immediately, so that is how and why the cheese melts.
Answer:
he fall movement we see that both the force is different from zero, and the torque is different from zero.
When analyzing the statements the d is true
Explanation:
Let's pose the solution of this problem, to be able to analyze the firm affirmations.
When the person is falling, the weight acts on them all the time, initially the rope has no force, but at the moment it begins to lash it exerts a force towards the top that is proportional to the lengthening of the rope.
The equation for this part is
Fe - W = m a
k x - mg = m a
As the axis of rotation is located at the top where they jump, there is a torque.
What is it
Fe y - W y = I α
angular and linear acceleration are related
a = α r
Fe y - W y = I a / r
In the fall movement we see that both the force is different from zero, and the torque is different from zero.
When analyzing the statements the d is true
Answer:
The maximum amount of mechanical energy converted to internal energy during the fall is 26.7 joules
Explanation:
Potential Energy (PE) = weight of baseball × height = 1.47N × 10m = 14.7Nm = 14.7 joules
Kinetic Energy (KE) = 12 joules
Maximum amount of mechanical energy converted to internal energy during the fall = PE + KE = 14.7 joules + 12 joules = 26.7 joules