Answer:
(a) v = 15m/a
(b) No they won't feast because the rock can only rise to a height of 11.5m which is less than 15m.
Explanation:
Please see the attachment below for film solution.
Given
m1(mass of red bumper): 225 Kg
m2 (mass of blue bumper): 180 Kg
m3(mass of green bumper):150 Kg
v1 (velocity of red bumper): 3.0 m/s
v2 (final velocity of the combined bumpers): ?
The law of conservation of momentum states that when two bodies collide with each other, the momentum of the two bodies before the collision is equal to the momentum after the collision. This can be mathemetaically represented as below:
Pa= Pb
Where Pa is the momentum before collision and Pb is the momentum after collision.
Now applying this law for the above problem we get
Momentum before collision= momentum after collision.
Momentum before collision = (m1+m2) x v1 =(225+180)x 3 = 1215 Kgm/s
Momentum after collision = (m1+m2+m3) x v2 =(225+180+150)x v2
=555v2
Now we know that Momentum before collision= momentum after collision.
Hence we get
1215 = 555 v2
v2 = 2.188 m/s
Hence the velocity of the combined bumper cars is 2.188 m/s
It would be 17 m/s
If we use
V2 = V1 + a*t
Sub in 5 for v1
2m/s*2 for a
And
6 for t
That should give you the answer.
Answer:
4 (please see the attached file)
Explanation:
While the angular speed (counterclockwise) remained constant, the angular acceleration was just zero.
So, the only force acting on the bug (parallel to the surface) was the centripetal force, producing a centripetal acceleration directed towards the center of the disk.
When the turntable started to spin faster and faster, this caused a change in the angular speed, represented by the appearance of an angular acceleration α.
This acceleration is related with the tangential acceleration, by this expression:
at = α*r
This acceleration, tangent to the disk (aiming in the same direction of the movement, which is counterclockwise, as showed in the pictures) adds vectorially with the centripetal force, giving a resultant like the one showed in the sketch Nº 4.