answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
hodyreva [135]
2 years ago
6

The energy gaps between the valence and conduction bands are called band gaps. For silicon, the band gap is 1.1 eV; for fused si

lica glass, it is 9.3 eV.
What is the wavelength λ of a photon that has energy 1.1eV?
The cut off between visible and infrared light is usually said to be somewhere between 700 and 800nm. Why is silicon transparent to most infrared light but opaque to visible light?
a) Visible photons have greater energy than the gap, so they can be absorbed whereas infrared photons pass through.
b) Visible photons have greater energy than the gap, so they can’t interact with the silicon as the infrared photons can.
c) Infrared photons have less energy than the gap, and so, unlike visible photons, they can be absorbed and reemitted from the material.
d) Infrared photons have less energy than the gap, and so they are only partially absorbed whereas visible photons are fully absorbed.
Physics
1 answer:
kotegsom [21]2 years ago
6 0
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.
<span>d) Infrared photons have less energy than the gap, and so they are only partially absorbed whereas visible photons are fully absorbed.</span>
You might be interested in
A particle in the first excited state of a one-dimensional infinite potential energy well (with U = 0 inside the well) has an en
nataly862011 [7]

Answer:

The energy of this particle in the ground state is E₁=1.5 eV.

Explanation:

The energy E_{n} of a particle of mass <em>m</em> in the <em>n</em>th energy state of an infinite square well potential with width <em>L </em>is:

                                                    E_{n}=\frac{n^{2}h^{2}}{8mL^{2}}

In the ground state (n=1). In the first excited state (n=2) we are told the energy is E₂= 6.0 eV. If we replace in the above equation we get that:

                                                    E_{1}=\frac{h^{2}}{8mL^{2}}            

                                                    E_{2}=\frac{h^{2}}{2mL^{2}}

So we can rewrite the energy in the ground state as:

                                                   E_{1}=\frac{1}{4}(\frac{h^{2}}{2mL^{2}})

                                                      E_{1}=\frac{1}{4} E_{2}

                                                   E_{1}=\frac{1}{4} ( 6.0\ eV)

Finally

                                                    E_{1}=1.5\ eV

                                                   

                                                   

6 0
2 years ago
Two blocks, with masses m and 3m, are attached to the ends of a string with negligible mass that passes over a pulley, as shown
olasank [31]

Answer:

a)  v = √ g x , b)  W = 2 m g d , c)    a = ½ g

Explanation:

a) For this exercise we use Newton's second law, suppose that the block of mass m moves up

            T-W₁ = m a

            W₃ - T = M a

            w₃ - w₁ = (m + M) a

            a = (3m - m) / (m + 3m) g

            a = 2/4 g

            a = ½ g

the speed of the blocks is

          v² = v₀² + 2 ½ g x

          v = √ g x

b) Work is a scalar, therefore an additive quantity

light block s

           W₁ = -W d = - mg d

3m heavy block

             

            W₂ = W d = 3m g d

the total work is

             W = W₁ + W₂

             W = 2 m g d

c) in the center of mass all external forces are applied, they relate it is

                      a = ½ g

8 0
2 years ago
Read 2 more answers
14 gauge copper wire has a diameter of 1.6 mm. what length of this wire has a resistance of 4.8ω?
Vladimir79 [104]
The relationship between resistance R and resistivity \rho is
R= \frac{\rho L}{A}
where L is the length of the wire and A its cross section.

The radius of the wire is half the diameter:
r= \frac{d}{2}= \frac{1.6 mm}{2}=0.8 mm=8\cdot 10^{-4} m
and the cross section is
A=\pi r^2 = \pi (8\cdot 10^{-4} m)^2=2.01\cdot 10^{-6} m^2

From the first equation, we can then find the length of the wire when R=4.8 \Omega (copper resistivity: \rho = 1.724 \cdot 10^{-8} \Omega m)
L= \frac{AR}{\rho}= \frac{(2.01\cdot 10^{-6} m^2)(1.724 \cdot 10^{-8} \Omega m)}{4.8 \Omega}=7.21 \cdot 10^{-15} m
4 0
2 years ago
A ball of mass m and radius R is both sliding and spinning on a horizontal surface so that its rotational kinetic energy equals
spin [16.1K]

Answer:

\frac{v_{cm}}{\omega} = 1.122\cdot R

Explanation:

According to the statement of the problems, the following identity exists:

K_{t} = K_{r}

\frac{1}{2}\cdot m \cdot v_{cm}^{2} = 0.63\cdot m \cdot R^{2} \cdot \omega^{2}

After some algebraic handling, the ratio is obtained:

\frac{v_{cm}^{2}}{\omega^{2}}=1.26\cdot R^{2}

\frac{v_{cm}}{\omega} = 1.122\cdot R

4 0
2 years ago
A 3.0-kilogram object is acted upon by an impulse having a magnitude of 15 newton•seconds. What is the magnitude of the object’s
Ilia_Sergeevich [38]
The mass of the object doesn't matter. The change in its momentum is equal to the impulse that changed it ... 15 N-sec.
3 0
2 years ago
Other questions:
  • Suppose you push a hockey puck of mass m across frictionless ice for a time 1.0 s, starting from rest, giving the puck speed v a
    13·2 answers
  • A hockey puck with a mass of 0.16 kg is sitting at rest on a frozen pond. Suddenly, the wind begins to blow, accelerating the pu
    6·2 answers
  • The number that is used to show the value of one currency compared to another is called the __________. A. trade rate B. currenc
    6·1 answer
  • The dry adiabatic rate of change for unsaturated air is 10°c/1000 m. what does this mean
    13·1 answer
  • A crane uses a block and tackle to lift a 2200N flagstone to a height of 25m
    15·1 answer
  • A cat named SchrÖdinger walks along a uniform plank that is 4.00 m long and has a mass of 7.00 kg. The plank is supported by two
    13·1 answer
  • Keisha looks out the window from a tall building at her friend Monique standing on the ground, 8.3 m away from the side of the b
    10·1 answer
  • ou purchase a rectangular piece of metal that has dimen- sions 5.0 * 15.0 * 30.0 mm and mass 0.0158 kg. The seller tells you tha
    11·1 answer
  • A child on a sled starts from rest at the top of a 15.0° slope. If the trip to the bottom takes 22.6 s how long is the slope? As
    11·1 answer
  • Think of something from everyday life that follows a two-dimensional path. It could be a kicked football, a bus that's turning a
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!