Answer:
A glass flask whose volume is 1000 cm ^3 at 0.0 ^oC is completely filled with mercury at this. Every substance when heat energy is supplied, expands due to the Rate of thermal expansion will be different for different materials. Volume of the glass flask and mercury at 0 degree Celsius V0=1000cm3=1×10−3m3 V 0
Explanation:
hope dis help!!!
To develop this problem we will apply the concepts related to the Doppler effect. The frequency of sound perceive by observer changes from source emitting the sound. The frequency received by observer
is more than the frequency emitted by the source. The expression to find the frequency received by the person is,

= Frequency of the source
= Speed of sound
= Speed of source
The velocity of the ambulance is


Replacing at the expression to frequency of observer we have,


Therefore the frequency receive by observer is 878Hz
Answer:
(a) Eₐ = 6.36 J/s
(b) Eₐ = 4.64 J/s
Explanation:
Stefan-Boltzmann law: States that the total energy per second radiated or absorbed by a black body is directly proportional to the absolute temperature.
Using, Stefan-Boltzmann equation
Eₐ =eσAT⁴ ................ Equation 1
where Eₐ = Radiant energy absorbed per seconds, e = emissivity, σ = stefan - boltzman constant, A = Surface area. and T = temperature in kelvin
(a) Where e = 0.89, σ = 5.67 ×10⁻⁸ watt/m²/K⁴, A = 140 cm² = 140 cm²(m²/10000cm²) = 0.014 m², T = 35 °C = (35 + 273) K = 308 K.
Applying these values in equation 1 above,
Eₐ = 0.89 × 5.67 ×10⁻⁸ × 0.014 × (308)⁴
Eₐ =6.36 J/s
(b) when e = 0.65,
∴ Eₐ = 0.65 × 5.67 × 10⁻⁸ × 0.014 × (308)⁴
Eₐ = 4.64 J/s
The Newton’s law Nikolas would use to come up with this idea is the <span>Third law that states:
</span><span>When one body exerts a force on a second body, the second body simultaneously exerts a force equal in magnitude and opposite in direction on the first body.
</span>
So, in this case, let's name the first Body
A which is the skateboard and the second body
B which is <span>the compressed carbon dioxide in a fire extinguisher. Then, as shown in the figure below, according to the Third law:
</span>

<span>
</span>