Answer:
θ₂ = 90° - θ₁
Explanation:
When the light falls on a mirror it bounces back. This is know as reflection. The incident angle is equal to the angle of reflection.
Here, the light strikes the mirror at an angle = θ₁
To find the angle of reflection we first need to understand angle of incidence. The angle of incidence is the angle made between the incident ray and normal. Normal is an imaginary line drawn perpendicular line on the boundary of the mirror.
Since the light strikes the mirror at angle of θ₁, which is the angle between light ray and the mirror.
Angle of incidence = 90° - θ₁.
Thus, angle of reflection, θ₂ = 90° - θ₁
B.
The child is too old to be gaining something from the screen time.
Answer:
Explanation:
Given that,
Height of the bridge is 20m
Initial before he throws the rock
The height is hi = 20 m
Then, final height hitting the water
hf = 0 m
Initial speed the rock is throw
Vi = 15m/s
The final speed at which the rock hits the water
Vf = 24.8 m/s
Using conservation of energy given by the question hint
Ki + Ui = Kf + Uf
Where
Ki is initial kinetic energy
Ui is initial potential energy
Kf is final kinetic energy
Uf is final potential energy
Then,
Ki + Ui = Kf + Uf
Where
Ei = Ki + Ui
Where Ei is initial energy
Ei = ½mVi² + m•g•hi
Ei = ½m × 15² + m × 9.8 × 20
Ei = 112.5m + 196m
Ei = 308.5m J
Now,
Ef = Kf + Uf
Ef = ½mVf² + m•g•hf
Ef = ½m × 24.8² + m × 9.8 × 0
Ef = 307.52m + 0
Ef = 307.52m J
Since Ef ≈ Ei, then the rock thrown from the tip of a bridge is independent of the direction of throw
Larry Finkelstein, Norman Fischer, and Cassius Schwartz have been overlooked, in my opinion.
<em>ANSWER</em>
<u>An increase in relative humidity</u>
<em><u>Could you mark me brainliest plz?</u></em>