answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vodomira [7]
2 years ago
10

In a distant solar system, a giant planet has

Physics
1 answer:
sergeinik [125]2 years ago
8 0

Answer:

mass of the planet: 5.9\,10^{26}\,kg

Explanation:

When a moon keeps a circular orbit around a planet, it is the force of gravity the one that provides the centripetal force to keep it in its circular trajectory of radius R. So if we can write that in such cases (being the mass of the planet "M" and the mass of the moon "m"), we can form an equation by making the centripetal force on the moon equal the force of gravity (using the Newton's Universal Law of Gravity):

m\frac{v^2}{R}=G\frac{M\,m}{R^2}

where we used here the tangential velocity (v) of the moon around the planet. This equation can be further simplified by dividing both sides by "m" and multiplying both sides by the orbital radius R:

m\frac{v^2}{R}=G\frac{M\,m}{R^2}\\v^2=G\frac{M}{R}

Notice that the mass of the moon has actually disappeared from the equation, which tells us that the orbiting velocity and period do not depend on the mass of the moon, but on the mass of the actual planet.

We know the orbital radius R (5.32\,10^5\,km=5.32\,10^8\,m, the value of the Universal Gravitational constant G, and we can estimate the value of the tangential velocity of the moon since we know it period: 36.3 hrs = 388800 seconds.

We know that the moon makes a full circumference (2\,\pi\,R) in 388800 seconds, therefore its tangential velocity is:

v=\frac{2\,\pi\,5.32\,10^8}{388800} \frac{m}{s} \\v=8.6\,10^3\,\frac{m}{s}

where we rounded the velocity to one decimal.

Notice that we have converted all units to the SI system, so when using the formula to solve for the mass of the planet, the answer comes directly in kg.

Now we use this value for the tangential velocity to estimate the mass of the planet in the first equation we made and simplified:

v^2=G\frac{M}{R}\\M=\frac{v^2\,R}{G} \\M=\frac{(8.6\,10^3)^2\,5.32\,10^8}{6.67\,10^{-11}}kg\\M=5.9\,10^{26}\,kg

You might be interested in
what velocity must a 1340kg car have in order to havw the same momentum as a 2680 kg truck traveling at a velocity of 15m/s to t
kykrilka [37]
Car with a mass of 1210 kg moving at a velocity of 51 m/s.
2. What velocity must a 1340 kg car have in order to have the same momentum as a 2680 kg truck traveling at a velocity of 15 m/s to the west? 3.0 X 10^1 m/s to the west.

Hope i helped
Have a good day :)

 
6 0
2 years ago
A wildebeest and chicken participate in a race over a 2.00km long course. the wildebeest travels at a speed of 16.0m/s and chick
Nezavi [6.7K]

Answer:

(a)  The distance of the chicken from the finish line is 62.5 m

(b) The stationary time of the wildebeest is 675 s

Explanation:

Given;

total distance traveled by wildebeest and chicken, d = 2 km = 2000 m

speed of the wildebeest, v_w = 16 m/s

speed of the chicken, v_c = 2.5 m/s

Time for wildebeest to finish the race without stopping, 2000 / 16 = 125 s

Time for chicken to finish the race without stopping, 2000/2.5 = 800 s

(b) for how long in time (in s) was the wildebeest stationary?

t(stationary) = t(chicken) - t(wildebeest)

t = 800s - 125 s

t = 675 s

(a) how far (in m) is the chicken from the Finish Line when the wildebeest resume the race?

The time taken for the wildebeest to run 1.6 km (1600 m) is given by;

t = 1600 / 16 = 100 s

The total time spent by the wildebeest before it resumed the race = stationary time + 100s

t (total) = 675 s + 100 s = 775 s

Distnace traveled by the chicken when the wildebeest resumed the race = 2.5m/s x 775s = 1937.5 m

Thus, the distance of the chicken from the finish line = 2000 m -  1937.5 m

the distance of the chicken from the finish line = 62.5 m

7 0
2 years ago
a shopper pushes a cart 40.0m south down one aisle and then turns 90.0 degrees and moves 15.0m. He then makes another 90.0 degre
valentinak56 [21]

Answer:

Explanation:

The displacement is the distnce of the shopper from the starting point.

Sum of movement along the vertical = 40-20 = 20m

Movement along the horizontal (x direction) = 15.0m

Displacement will be gotten using the pythagoras theorem.

d = √20²+ 15²

d = √400+225

d = √625

d = 25.0m

Hence the shoppers total displacement is 25.0m

8 0
2 years ago
The speed of sound in air is 320 ms-1 and in water it is 1600 ms-1. It takes 2.5 s for sound to reach a certain distance from th
Nonamiya [84]

Answer:

Distance covered by the sound in air is 800 meter and the time taken by the sound in water for the same distance is 0.5 seconds.

Explanation:

Given:

Speed of sound in air = 320 m/s

Speed of sound in water = 1600 m/s

Time taken to reach certain distance in air = 2.5 sec

a.

We have to find the distance traveled by sound in air.

Distance = Product of speed and time.

⇒ Distance = Speed\times time\ taken

⇒ Distance = 320\times 2.5

⇒ Distance = 800 meters.

b.

Now we have to find how much time the sound will take to travel in water.

⇒ Time = Ratio of distance and speed

⇒ Time =\frac{distance}{speed}

⇒ Time =\frac{800}{1600}   <em>   ...distance = 800 m and speed = 1600 m/s</em>

⇒ Time =\frac{1}{2}

⇒ Time =0.5 seconds.

Distance covered by the sound in air is 800 meter and the time taken by the sound in water for the same distance is 0.5 seconds.

7 0
2 years ago
A rigid, uniform bar with mass mmm and length bbb rotates about the axis passing through the midpoint of the bar perpendicular t
Pie

Answer:

I = \frac{mvb}{6}

Explanation:

we know angular velocity in terms of moment of inertia and angular speed

       L = Iω ....                        (1)

moment of inertia of rod rotating about its center of length b

 

      I = \frac{ mb^2}{12}  ........               .(2)  

using         v = ωr  

where w is angular velocity

and r is radius of  rod which is equal to b

        so we get  2v =  ωb  

                            ω  = 2v/b  .................            (3)    

here velocity is two time because two opposite ends  are moving opposite with a velocity v so net velocity will be 2v

put second and third equation in ist equation

                 L   =   \frac{mb^2}{12}×\frac{2v}{b}

              so final answer will be      L  =   \frac{mvb}{6}

7 0
2 years ago
Other questions:
  • Scientists plan to release a space probe that will enter the atmosphere of a gaseous planet. The temperature of the gaseous plan
    14·1 answer
  • Two marbles are launched at t = 0 in the experiment illustrated in the figure below. Marble 1 is launched horizontally with a sp
    12·2 answers
  • An airplane flying parallel to the ground undergoes two consecutive dis- placements. The first is 75 km 30.0° west of north, and
    9·1 answer
  • A (1.25+A) kg bowling ball is hung on a (2.50+B) m long rope. It is then pulled back until the rope makes an angle of (12.0+C)o
    13·1 answer
  • James Joule (after whom the unit of energy is named) claimed that the water at the bottom of Niagara Falls should be warmer than
    8·1 answer
  • Suppose the fetus's ventricular wall moves back and forth in a pattern approximating simple harmonic motion with an amplitude of
    9·1 answer
  • A hockey puck of mass m1=165 g slides from left to right with an initial velocity of 15.5 m/s. It collides head on with a second
    14·1 answer
  • a cylinder has a radius of 2.1cm and a length of 8.8cm .total charge 6.1 x 10^-7C is distributed uniformly throughout. the volum
    14·1 answer
  • Picture a long, straight corridor running east-west, with a water fountain located somewhere along it. Starting from the west en
    12·1 answer
  • Study the diagram and calculate the effort required to balance the load​
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!