If a coin is dropped at a relatively low altitude, it's acceleration remains constant. However, if the coin is dropped at a very high altitude, air resistance will have a significant effect. The initial acceleration of the coin will be the greatest. As it falls down, air resistance will counteract the weight of the coin. So, the acceleration will decrease. Although the acceleration decreases, the coin still accelerates, that is why it falls faster. When the air resistance fully counters the weight of the coin, the acceleration will become zero and the coin will fall at a constant speed (terminal velocity). So, the answer should be, The acceleration decreases until it reaches 0. The closest answer is.
a. The acceleration decreases.
The Energy is Kinetic Energy.
Kinetic Energy = 1/2*mv², Where m is mass in kg, v is velocity in m/s
Energy is 33750 Juoles, v = 30m/s
1/2*mv² = E
1/2*m*30² = 33750
m = (2*33750) / (30²) Using a calculator
m = 75 kg
Mass of object is 75 kg.
Answer:
The final size is approximately equal to the initial size due to a very small relative increase of
in its size
Solution:
As per the question:
The energy of the proton beam, E = 250 GeV =
Distance covered by photon, d = 1 km = 1000 m
Mass of proton, 
The initial size of the wave packet, 
Now,
This is relativistic in nature
The rest mass energy associated with the proton is given by:


This energy of proton is 
Thus the speed of the proton, v
Now, the time taken to cover 1 km = 1000 m of the distance:
T = 
T = 
Now, in accordance to the dispersion factor;


Thus the increase in wave packet's width is relatively quite small.
Hence, we can say that:

where
= final width
Answer:
T₂ =602 °C
Explanation:
Given that
T₁ = 227°C =227+273 K
T₁ =500 k
Gauge pressure at condition 1 given = 100 KPa
The absolute pressure at condition 1 will be
P₁ = 100 + 100 KPa
P₁ =200 KPa
Gauge pressure at condition 2 given = 250 KPa
The absolute pressure at condition 2 will be
P₂ = 250 + 100 KPa
P₂ =350 KPa
The temperature at condition 2 = T₂
We know that

T₂ = 875 K
T₂ =875- 273 °C
T₂ =602 °C