The correct answer is 17.24 m/s. You get the answer by subtracting the two heights of the tracks which are 36.5 and 10.8 m, and the answer is 25.7. Since you already know the height at which the kinetic energy will be coming from, you then divide the amount of weight the roller coaster has to the distance it needs to travel in order for you to determine the speed of the car. So that is, 4,357 kg and 25.7 m and the answer is 169 kg/m. Dividing it to the earth's gravity of 9.8 m/s you'll get 17.24 m/s.
You will have to use this formula:

Final Velocity (V) = 4m/s
Initial Velocity (Vo) = 8m/s
Acceleration (a) = ? m/s^2
Time (t) = 2 secs
Then:
-> 4 = 8 + a x 2
-> 4 - 8 = 2a
-> -4 = 2a
-> a = -4/2
-> a = -2 m/s^2
Ps: It's value is negative because the she was in retrograde motion.
Answer: Her acceleration is -2 m/s^2.
1. Confident in Reasoning: Douglas is truthful of his reasoning skills to yield good judgments.
2. Analytical: <span>Douglas is habitually alert to potential problems and vigilant in anticipating consequences and trying to foresee short-term and long-term outcomes of being primary care taker for his wife. </span>
Answer:
(A) Q = 2.26×10⁶J
(B) ΔT = 9°C
(C)
Explanation:
We have been given the mass of the hiker, the volume of water from which we can calculate the mass knowing that the density if water is 1000kg/m³.
Evaporation is a phase change and occurs at a constant temperature. We would use the latent heat of vaporization to calculate the amount of heat evaporated.
We would then equate this to the heat change it brings about in the hiker's body and then calculate the temperature drop.
See the attachment below for full solution.