answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nadusha1986 [10]
2 years ago
6

The drawing shows three identical springs hanging from the ceiling. Nothing is attached to the first spring, whereas a 4.50-N bl

ock hangs from the second spring. A block of unknown weight hangs from the third spring. From the drawing, determine (a) the spring constant (in N/m) and (b) the weight of the block hanging from the third spring

Physics
1 answer:
Pavlova-9 [17]2 years ago
4 0

Answer:

a. 30 N / m

b. 9.0 N

Explanation:

Given that

Unstretched length of the spring, L_o = 20.0cm = 0.2m

a) When the mass of 4.5N is hanging from the second spring, then extended length Is

L_1 = 35.0cm =  0.35m

So, the change in spring length when mass hangs is

x =  L_1 - L_o

= (0.35 - 0.20) m

= 0.15m

As spring are identical

Let us assume that the spring constant be "k", so at equilibrium

Restoring Force on spring = Block weightage

kx =  W =  4.50

k= \frac{4.50}{x} = \frac{4.50}{0.15}

= 30 N / m

b)  Now for the third spring, stretched the length of spring is

L_2 = 50cm = 0.5m

So, the change in spring length is

x'= L_2 - L_o

= (0.5-0.20)m

=  0.30m

At equilibrium,

Restoring Force on spring = Block weightage

Now using all mentioned and computed values in above,

W'= kx'

= 30(0.3)

= 9.0 N

You might be interested in
A 2-kg cart, traveling on a horizontal air track with a speed of 3 m/s, collides with a stationary 4-kg cart. The carts stick to
daser333 [38]

Answer:

Magnitude of impulse, |J| = 4 kg-m/s                                                                                

Explanation:

It is given that,

Mass of cart 1, m_1=2\ kg

Mass of cart 2, m_2=4\ kg  

Initial speed of cart 1, u_1=3\ m/s          

Initial speed of cart 2, u_2=0 (stationary)

The carts stick together. It is the case of inelastic collision. Let V is the combined speed of both carts. The momentum remains conserved.

m_1u_1+m_2u_2=(m_1+m_2)V

V=\dfrac{m_1u_1+m_2u_2}{(m_1+m_2)}        

V=\dfrac{2\times 3}{(2+4)}

V = 1 m/s

The magnitude of the impulse exerted by one cart on the other is given by:

J=F\times t=m(V-u)

J=m(V-u)

J=2\times (1-3)    

J = -4 kg-m/s

or

|J| = 4 kg-m/s

So, the magnitude of the impulse exerted by one cart on the other 4 kg-m/s. Hence, this is required solution.

8 0
2 years ago
In a car crash, large accelerations of the head can lead to severe injuries or even death. A driver can probably survive an acce
Mandarinka [93]

Answer:

0.22 m

Explanation:

We are told that the driver can survive an acceleration of 50g only if the collision lasts no longer than 30 ms. So,

t = 30 ms = 0.030 s

The acceleration is

a=-50g = -50(9.8)=-490 m/s^2

where the negative sign is due to the fact that this is a deceleration, since the driver comes to a stop in the collision.

First of all, we can find what the initial velocity of the car should be in this conditions by using the equation:

v=u+at

And since the final velocity is zero, v=0, and solving for u,

u=-at=-490(0.030)=14.7 m/s

And now we can find the corresponding distance travelled using the equation:

d=ut+\frac{1}{2}at^2 = (14.7)(0.030)+\frac{1}{2}(-490)(0.030)^2=0.22 m

8 0
2 years ago
A 128.0-N carton is pulled up a frictionless baggage ramp inclined at 30.0∘above the horizontal by a rope exerting a 72.0-N pull
Elden [556K]

Answer:

(A) 374.4 J

(B) -332.8 J

(C) 0 J

(D) 41.6 J

(E)  351.8 J

Explanation:

weight of carton (w) = 128 N

angle of inclination (θ) = 30 degrees

force (f) = 72 N

distance (s) = 5.2 m

(A) calculate the work done by the rope

  • work done = force x distance x cos θ
  • since the rope is parallel to the ramp the angle between the rope and

        the ramp θ will be 0

       work done = 72 x 5.2 x cos 0

       work done by the rope = 374.4 J

(B) calculate the work done by gravity

  • the work done by gravity = weight of carton x distance x cos θ
  • The weight of the carton = force exerted by the mass of the carton = m x g
  • the angle between the force exerted by the weight of the carton and the ramp is 120 degrees.

      work done by gravity = 128 x 5.2  x cos 120

      work done by gravity = -332.8 J

(C) find the work done by the normal force acting on the ramp

  • work done by the normal force = force x distance x cos θ
  • the angle between the normal force and the ramp is 90 degrees

       

         work done by the normal force = Fn x distance x cos θ

         work done by the normal force = Fn x 5.2 x cos 90

         work done by the normal force = Fn x 5.2 x 0

         work done by the normal force = 0 J

(D)  what is the net work done ?

  • The net work done is the addition of the work done by the rope,       gravitational force and the normal force

     net work done = 374.4 - 332.8 + 0 =  41.6 J  

(E) what is the work done by the rope when it is inclined at 50 degrees to the horizontal

  • work done by the rope= force x distance x cos θ
  • the angle of inclination will be 50 - 30 = 20 degrees, this is because the ramp is inclined at 30 degrees to the horizontal and the rope is inclined at 50 degrees to the horizontal and it is the angle of inclination of the rope with respect to the ramp we require to get the work done by the rope in pulling the carton on the ramp

work done = 72 x 5.2 x cos 20

work done = 351.8 J

5 0
2 years ago
A basketball with mass of 0.8 kg is moving to the right with velocity 6 m/s and hits a volleyball with mass of 0.6 kg that stays
IceJOKER [234]

Answer:

26.67 m/s

Explanation:

From the law of conservation of linear momentum, the initial sum of momentum equals the final sum.

p=mv where p is momentum, m is the mass of object and v is the speed of the object

Initial momentum

The initial momentum will be that of basketball and volleyball, Since basketball is initially at rest, its initial velocity is zero

p_i= m_bv_b+m_vv_v=8*6+0.6*0=48 Kg.m/s

Final momentum

p_f= m_bv_b+m_vv_v=8*4+0.6*v_v=32+0.6v Kg.m/s\\32+0.6v_v=48\\0.6v=16\\v_v=16/0.6=26.66666667\approx 26.67 m/s

4 0
2 years ago
Pendulum clocks are made to run at the correct rate by adjusting the pendulum’s length. Suppose you move from one city to anothe
levacccp [35]

Answer:

Obviously Lengthen...   T = 2\pi \sqrt{L/g}   or   g = 4\pi ^{2} L/g

Explanation:

As we can observe from the equation, time period of a simple pendulum depends upon the length directly. When the gravitational acceleration increases the time period of the pendulum decreases and vice versa. So, by increasing the length, the time period can be adjusted...

4 0
2 years ago
Other questions:
  • Select the volume units that are greater than one liter.
    7·2 answers
  • A child is riding a bike at a speed of 6m/s with a total kinetic energy of 1224J. If the mass of the child is 30kg, what is the
    8·1 answer
  • A 5.0 kg cannonball is dropped from the top of a tower. It falls for 1.6 seconds before slamming into a sand pile at the base of
    8·1 answer
  • A mechanic uses a hydraulic car jack to lift the front end of a car to change the oil. The jack used exerts 8,915 N of force fro
    6·1 answer
  • If this energy were used to vaporize water at 100.0 ∘C, how much water (in liters) could be vaporized? The enthalpy of vaporizat
    6·1 answer
  • A spring stretches 0.018 m when a 2.8-kg object is suspendedfrom its end. How much mass should be attached to this spring sothat
    9·1 answer
  • A metal, M, forms an oxide having the formula M2O3 containing 52.92% metal by mass. Determine the atomic weight in g/mole of the
    8·1 answer
  • (1 point) Which of the following statements are true?A.The equation Ax=b is referred to as a vector equation.B.If the augmented
    10·1 answer
  • The downsprue leading into the runner of a certain mold has a length of 175 mm. The cross-sectional area at the base of the spru
    14·1 answer
  • The equation for photosynthesis is 6H2O (water) + 6CO2 (carbon dioxide) + Light Energy → C6H12O6 (glucose) + 6O2 (oxygen). When
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!