A. The horizontal velocity is
vx = dx/dt = π - 4πsin (4πt + π/2)
vx = π - 4π sin (0 + π/2)
vx = π - 4π (1)
vx = -3π
b. vy = 4π cos (4πt + π/2)
vy = 0
c. m = sin(4πt + π/2) / [<span>πt + cos(4πt + π/2)]
d. m = </span>sin(4π/6 + π/2) / [π/6 + cos(4π/6 + π/2)]
e. t = -1.0
f. t = -0.35
g. Solve for t
vx = π - 4πsin (4πt + π/2) = 0
Then substitute back to solve for vxmax
h. Solve for t
vy = 4π cos (4πt + π/2) = 0
The substitute back to solve for vymax
i. s(t) = [<span>x(t)^2 + y</span>(t)^2]^(1/2)
h. s'(t) = d [x(t)^2 + y(t)^2]^(1/2) / dt
k and l. Solve for the values of t
d [x(t)^2 + y(t)^2]^(1/2) / dt = 0
And substitute to determine the maximum and minimum speeds.
Answer:
Please find the answer in the explanation
Explanation:
Given that A 1.0 g plastic bead, with a charge of -6.0 nC, is suspended between the two plates by the force of the electric field between them.
Since it is suspended, it must have been repelled by the bottom negative plate and trying to be attracted to the top plate.
We can therefore conclude that the upper plate, is positively charged
B.) The charge on the positive plate of parallel-plate capacitor is constructed of two horizontal 12.0-cm-diameter circular plates must be less than 6.0 nC
Answer:

Explanation:
The strain is defined as the ratio of change of dimension of an object under a force:

where
is the change in length of the object
is the original length of the object
In this problem, we have
and
, therefore the strain is

I don't understand what you mean by "depth" of the steps. The flat part of the step has a front-to-back dimension, and the 'riser' has a height. I don't care about the horizontal dimension of the step because it doesn't add anything to the climber's potential energy. And if the riser of each step is 20cm high, then 3,234 of them only take him (3,234 x 0.2) = 646.8 meters up off the ground. So something is definitely fishy about the steps.
Fortunately, we don't need to worry at all about the steps in order to derive a first approximation to the answer ... one that's certainly good enough for high school Physics.
In order to lift his bulk 828 meters from the street to the top of the Burj, the climber has to provide a force of 800 newtons, and maintain it through a distance of 828 meters. The work [s]he does is (force) x (distance) = <em>662,400 joules. </em>