answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vova2212 [387]
2 years ago
11

What could be done to change this carbide ion to a neutral carbon atom? remove 2 electrons add 2 electrons remove 4 electrons ad

d 4 electrons
Physics
2 answers:
Black_prince [1.1K]2 years ago
8 0

Answer:

the answer is "remove 4 electrons"

ollegr [7]2 years ago
6 0
A carbide ion is an anion of carbon atom with two carbon atoms with a triple bond connected to each other. Since this carbide ion is a negatively charged ion, in order to convert carbide ion to its neutral carbon atom, it has to give up/remove four electrons. 
You might be interested in
160 students sit in an auditorium listening to a physics lecture. Because they are thinking hard, each is using 125 W of metabol
anastassius [24]

Answer:

minimum power should be used to operate the air conditioner is 4000 W

Explanation:

given data

students  n = 160

power p = 125 W

COP = 5.0

to find out

what minimum power should be used

solution

we know the COP formula that is given below

COP = students × power  / minimum power

minimum power = n × p / COP

put all value

minimum power = n × p / COP

minimum power = 160 × 125 / 5

minimum power = 4000 W

minimum power should be used to operate the air conditioner is 4000 W

8 0
2 years ago
When light energy hits the retina, the retinal changes from a _____ to a _____ configuration.
gayaneshka [121]

Answer:

Cis, Trans.

Explanation:

Rhodopsin also known as visual purple, pigment which contains sensory protein that helps to convert light into an electrical signal. Rhodopsin present in wide range of organisms from bacteria to vertebrates.

Rhodopsin is composed of opsin, and 11-cis-retinaldehyde which is derived from vitamin A. When the eye contact with light the 11-cis component converted to all trans-retinal, which results in the changes in configuration fundamental in the rhodopsin molecule.

5 0
2 years ago
Suppose that an asteroid traveling straight toward the center of the earth were to collide with our planet at the equator and bu
MArishka [77]

Complete Question:

Suppose that an asteroid traveling straight toward the center of the earth were to collide with our planet at the equator and bury itself just below the surface. What would have to be the mass of this asteroid, in terms of the earth’s mass M, for the day to become 25.0% longer than it presently is as a result of the collision? Assume that the asteroid is very small compared to the earth and that the earth is uniform throughout.

Answer:

m = 0.001 M

For the whole process check the following page: https://www.slader.com/discussion/question/suppose-that-an-asteroid-traveling-straight-toward-the-center-of-the-earth-were-to-collide-with-our/

6 0
2 years ago
A quarterback throws a football at 40km/hr to a receiver 50yd away. How much time does it take the ball to reach the receiver
Akimi4 [234]

Given:

Distance = 50 yard = 45.72 meter

Speed = 40 km/hr = 11.11 m/s

To find:

Time required by ball to reach the receiver = ?

Formula used:

speed = \frac{distance}{time}

Solution:

The speed of the ball is given by,

speed = \frac{distance}{time}

Thus,

Time = \frac{distance}{speed}

Distance = 50 yard = 45.72 meter

Speed = 40 km/hr = 11.11 m/s

Time = 4.12 second

Hence, ball reaches the receiver in 4.12 second.

3 0
2 years ago
Planetary orbits... are spaced more closely together as they get further from the Sun. are evenly spaced throughout the solar sy
BaLLatris [955]

Answer:

E) are almost circular, with low eccentricities.

Explanation:

Kepler's laws establish that:

All the planets revolve around the Sun in an elliptic orbit, with the Sun in one of the focus (Kepler's first law).

A planet describes equal areas in equal times (Kepler's second law).

The square of the period of a planet will be proportional to the cube of the semi-major axis of its orbit (Kepler's third law).

T^{2} = a^{3}

Where T is the period of revolution and a is the semi-major axis.

Planets orbit around the Sun in an ellipse with the Sun in one of the focus. Because of that, it is not possible to the Sun to be at the center of the orbit, as the statement on option "C" says.

However, those orbits have low eccentricities (remember that an eccentricity = 0 corresponds to a circle)

In some moments of their orbit, planets will be closer to the Sun (known as perihelion). According with Kepler's second law to complete the same area in the same time, they have to speed up at their perihelion and slow down at their aphelion (point farther from the Sun in their orbit).

Therefore, option A and B can not be true.

In the celestial sphere, the path that the Sun moves in a period of a year is called ecliptic, and planets pass very closely to that path.  

4 0
2 years ago
Other questions:
  • If gravity between the Sun and Earth suddenly vanished, Earth would continue moving in
    5·1 answer
  • Click to review the online content. Then answer the question(s) below, using complete sentences. Scroll down to view additional
    14·1 answer
  • Divers found two substances on the bottom of the ocean. At room temperature, both substances are liquid. Scientists then transfe
    9·2 answers
  • Consider an object with s=12cm that produces an image with s′=15cm. Note that whenever you are working with a physical object, t
    9·1 answer
  • Blank can cause magma within Earth to blank resulting in the formation of blank rock
    7·1 answer
  • An experiment is conducted in which red light is diffracted through a single slit. Listed below are alterations made, one at a t
    6·1 answer
  • Two sinusoidal waves are identical except for their phase. When these two waves travel along the same string, for which phase di
    12·1 answer
  • An object traveling in a circular path is accelerating because its
    14·1 answer
  • To overcome an object's inertia, it must be acted upon by __________. A. gravity B. energy C. force D. acceleration
    5·2 answers
  • A student shines a mixture of red and blue light onto a blue toy car. What colour will the car appear?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!