Answer:
The major ethical issues in leading examination are: an) Informed assent, b) Beneficence-Do not hurt c) Respect for obscurity and secrecy d) Respect for security.
Explanation:
The major ethical issues in leading examination are: an) Informed assent, b) Beneficence-Do not hurt c) Respect for obscurity and secrecy d) Respect for security.
There are a few reasons why it is essential to stick to ethical norms in research. To start with, standards advance the points of exploration, for example, information, truth, and shirking of blunder. For instance, preclusions against creating, adulterating, or distorting research information advance reality and limit mistake.
Answer:
v = 1/3 m / s = 0.333 m / s
in the direction of the truck
Explanation:
The average speed is defined by the variation of the position between the time spent
v = Δx / Δt
since the position is a vector we must add using vectors, we will assume that the displacement to the right is positive, the total displacement is
Δx = 20 - 15 +20
Δx = 25 m
therefore we calculate
v = 25/75
v = 1/3 m / s = 0.333 m / s
in the direction of the truck
Explanation:
Radius of a charged particle is given by
r=mv / Bq
= k/ q
where k = m v / B is a constant.
i.e. more is the magnitude of charge, less is the radius.
(inversely proportional)
From the diagram r_3 > r_2 > r_1 (more the curvature, less is the radius)
( although drawing is not given i am assuming the above order, however, one can change the order as per the diagram. The concept used remains the same)
therefore, q_1 > q_2 > q_3
.
Answer:
Hello your question is incomplete attached below is the complete question
Answer : x ( acceleration of mass 4m ) = 
The top pulley rotates because it has to keep the center of mass of the system at equilibrium
Explanation:
Given data:
mass suspended = 4 meters
mass suspended at other end = 3 meters
first we have to express the kinetic and potential energy equations
The general kinetic energy of the system can be written as
T = 
T =
also the general potential energy can be expressed as
U = 
The Lagrangian of the problem can now be setup as

next we will take the Euler-Lagrange equation for the generalized equations :
Euler-Lagrange equation = 
solving the equations simultaneously
x ( acceleration of mass 4m ) = 
The top pulley rotates because it has to keep the center of mass of the system at equilibrium
Answer:
0 kg m/s before and after collision
Explanation:
Let m, v be the mass and speed of the 2 balls, respectively, before the collision. Since they have the same mass and same speed but in opposite direction, the total momentum of the system would be:
P = mv - mv = 0 kg m/s
As the collision is elastic. The total momentum after the collision is the same as the total momentum before the collision, which is 0.