Efficiency η of a Carnot engine is defined to be:
<span>η = 1 - Tc / Th = (Th - Tc) / Th </span>
<span>where </span>
<span>Tc is the absolute temperature of the cold reservoir, and </span>
<span>Th is the absolute temperature of the hot reservoir. </span>
<span>In this case, given is η=22% and Th - Tc = 75K </span>
<span>Notice that although temperature difference is given in °C it has same numerical value in Kelvins because magnitude of the degree Celsius is exactly equal to that of the Kelvin (the difference between two scales is only in their starting points). </span>
<span>Th = (Th - Tc) / η </span>
<span>Th = 75 / 0.22 = 341 K (rounded to closest number) </span>
<span>Tc = Th - 75 = 266 K </span>
<span>Lower temperature is Tc = 266 K </span>
<span>Higher temperature is Th = 341 K</span>
Answer:
(a) 0.0178 Ω
(b) 3.4 A
(c) 6.4 x 10⁵ A/m²
(d) 9.01 x 10⁻³ V/m
Explanation:
(a)
σ = Electrical conductivity = 7.1 x 10⁷ Ω-m⁻¹
d = diameter of the wire = 2.6 mm = 2.6 x 10⁻³ m
Area of cross-section of the wire is given as
A = (0.25) π d²
A = (0.25) (3.14) (2.6 x 10⁻³)²
A = 5.3 x 10⁻⁶ m²
L = length of the wire = 6.7 m
Resistance of the wire is given as


R = 0.0178 Ω
(b)
V = potential drop across the ends of wire = 0.060 volts
i = current flowing in the wire
Using ohm's law, current flowing is given as


i = 3.4 A
(c)
Current density is given as


J = 6.4 x 10⁵ A/m²
(d)
Magnitude of electric field is given as


E = 9.01 x 10⁻³ V/m
Answer:
Time period for first satellites 24.46 days and for second satellites 37.67 days
Explanation:
Given :
Distance of first satellites
m
Distance of second satellites
m
Distance of charon
m
Time period of charon
days
From the kepler's third law,
Square of the time period is proportional to the cube of the semi major axis.


For first satellites,


days
For second satellites,


days
Therefore, time period for first satellites = 24.46 days and for second satellites 37.67 days
Answer:
The plate's surface charge density is 
Explanation:
Given that,
Speed = 9800 km/s
Distance d= 75 cm
Distance d' =15 cm
Suppose we determine the plate's surface charge density?
We need to calculate the surface charge density
Using work energy theorem


Here, final velocity is zero
...(I)
We know that,


...(II)
From equation (I) and (II)

Charge is negative for electron

Put the value into the formula


Hence, The plate's surface charge density is 