answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
leonid [27]
2 years ago
12

A projectile has an initial horizontal velocity of 15 meters per second and an initial vertical velocity of 25 meters per second

. Determine the projectiles horizontal displacement if the total time of flight is 5 seconds
Physics
1 answer:
Artyom0805 [142]2 years ago
5 0

Answer:

75 m

Explanation:

The horizontal motion of the projectile is a uniform motion with constant speed, since there are no forces acting along the horizontal direction (if we neglect air resistance), so the horizontal acceleration is zero.

The horizontal component of the velocity of the projectile is

v_x = 15 m/s

and it is constant during the motion;

the total time of flight is

t = 5 s

Therefore, we can apply the formula of the uniform motion to find the horizontal displacement of the projectile:

d= v_x t =(15 m/s)(5 s)=75 m

You might be interested in
Saturn's moon Mimas has an orbital period of 82,800 s at a distance of 1.87x10^8m from Saturn. Using m central m= (4n^2d^3/GT^2)
FromTheMoon [43]
5.65×10^26kg here you go
5 0
2 years ago
Read 2 more answers
8. Find the momentum of a photon in eV/c and in Kg. m/s if the wavelength is (a) 400nm ; (b) 1 Å = 0.1 nm, (c) 3 cm ; and (d) 2
nataly862011 [7]
We use the formula: p = E/c where E = hc / λ. hence, p = h/  λ. where h is the Planck's constant: 6.62607004 × 10-34 m2 kg / s and <span>λ is the wavelenght. 
</span>
a) p = <span>6.62607004 × 10-34 m2 kg / s / 0.1 x10^-9 m = 6.62607 x 10-24 m kg/s
</span>b) p = 6.62607004 × 10-34 m2 kg / s / 3 x10^-2 m = 2.20869 <span>x 10-32 m kg/s
</span>b) p = 6.62607004 × 10-34 m2 kg / s / 2 x10^-9 m = 3.3130 <span>x 10-25 m kg/s</span>
7 0
2 years ago
1) A fan is to accelerate quiescent air to a velocity of 8 m/s at a rate of 9 m3/s. Determine the minimum power that must be sup
azamat

Answer:

\dot{W} = 339.84 W

Explanation:

given data:

flow Q = 9 m^{3}/s

velocity = 8 m/s

density of air = 1.18 kg/m^{3}

minimum power required to supplied to the fan is equal to the POWER POTENTIAL of the kinetic energy and it is given as

\dot{W} =\dot{m}\frac{V^{2}}{2}

here \dot{m}is mass flow rate and given as

\dot{m} = \rho*Q

\dot{W} =\rho*Q\frac{V^{2}}{2}

Putting all value to get minimum power

\dot{W} =1.18*9*\frac{8^{2}}{2}

\dot{W} = 339.84 W

7 0
2 years ago
An inline skater skates on a circular track 120.0 m in diameter at a tangential speed of 9.20 m/s. If the skater’s mass is 68.5
jok3333 [9.3K]

Answer:

The centripetal force acting on the skater is <u>48.32 N.</u>

Explanation:

Given:

Radius of circular track is, R=120.0\ m

Tangential speed of the skater is, v=9.20\ m/s

Mass of the skater is, m=68.5\ kg

We are asked to find the centripetal force acting on the skater.

We know that, when an object is under circular motion, the force acting on the object is directly proportional to the mass and square of tangential speed and inversely proportional to the radius of the circular path. This force is called centripetal force.

Centripetal force acting on the skater is given as:

F_c=\frac{mv^2}{R}

Now, plug in the given values of the known quantities and solve for centripetal force, F_c. This gives,

F_c=\frac{68.5\times (9.20)^2}{120.0}\\\\F_c=\frac{68.5\times 84.64}{120}\\\\F_c=\frac{5797.84}{120}\\\\F_c=48.32\ N

Therefore, the centripetal force acting on the skater is 48.32 N.

3 0
2 years ago
A wedge with an inclination of angle θ rests next to a wall. A block of mass m is sliding down the plane. There is no friction b
Softa [21]

Answer:

  The net force on the block  F(net)  = mgsinθ).

   Fw =mg(cosθ)(sinθ)

Explanation:

(a)

Here, m is the mass of the block, n is the normal force, \thetaθ is the wedge angle, and Fw  is the force exerted by the wall on the wedge.

Since the block sliding down, the net force on the block is along the plane of the wedge that is equal to horizontal component of weight of the block.

                    F(net)  = mgsinθ

The net force on the block  F(net)  = mgsinθ).

The direction of motion of the block is along the direction of net force acting on the block. Since there is no frictional force between the wedge and block, the only force acting on the block along the direction of motion is mgsinθ.

(b)

From the free body diagram, the normal force n is equal to mgcosθ .

                           n=mgcosθ

The horizontal component of normal force on the block is equal to force

                           Fw=n*sin(θ) that exerted by the wall on the wedge.

Substitute mgcosθ for n in the above equation;

                           Fw =mg(cosθ)(sinθ)

Since, there is no friction between the wedge and the wall, there is component force acting on the wall to restrict the motion of the wedge on the surface and that force is arises from the horizontal component for normal force on the block.

6 0
2 years ago
Other questions:
  • Pressure and volume changes at a constant temperature can be calculated using
    8·1 answer
  • If electromagnetic radiation a has a lower frequency than electromagnetic radiation b the wavelength of a is
    6·1 answer
  • a closed systems internal energy changes by 178 j as a result of being heated with 658 j of energy. the energy used to do work b
    14·1 answer
  • Which one of the following devices converts radioactive emissions to light for detection?
    8·1 answer
  • A girl rolls a ball up an incline and allows it to re- turn to her. For the angle and ball involved, the acceleration of the bal
    14·1 answer
  • Calculate the energy released in joules when one mole of polonium-214 decays according to the following equation21484 Po --&gt;
    9·1 answer
  • A sled having a certain initial speed on a horizontal surface comes to rest after traveling 10 m. If the coefficient of kinetic
    12·1 answer
  • The coefficient of friction between the 2-lb block and the surface is μ=0.2. The block has an initial speed of Vβ =6 ft/s and is
    7·1 answer
  • A liquid in a test tube has a curved surface such that the edges touching the glass are higher than the surface at the center. T
    5·1 answer
  • At a certain instant the current flowing through a 5.0-H inductor is 3.0 A. If the energy in the inductor at this instant is inc
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!