answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Roman55 [17]
2 years ago
9

A frog jumps to the left with an average speed of

Physics
1 answer:
Bingel [31]2 years ago
7 0

Answer:

<h3>0.99 m</h3>

Explanation:

Average velocity is the change of rate of displacement with respect to time;

Average velocity = Displacement/Time

Given

Average velocity of the frog = 1.8m/s

Time = 0.55s

Required

Displacement of the frog

Substitute the given parameters into the formula;

1.8 = displacement/0.55

cross multiply

Displacement = 1.8*0.55

Displacement = 0.99 m

Hence the frog's displacement is 0.99m

You might be interested in
An object’s velocity is measured to be vx(t) = α - βt2, where α = 4.00 m/s and β = 2.00 m/s3. At t = 0 the object is at x = 0. (
Leona [35]

Answer:

Explanation:

Given

v_x(t)=\alpha -\beta t^2

\alpha =4\ m/s

\beta =2\ m/s^3

v_x(t)=4-2t^2

v=\frac{\mathrm{d} x}{\mathrm{d} t}

\int dx=\int \left ( 4-2t^2\right )dt

x=4t-\frac{2}{3}t^3

acceleration of object

a=\frac{\mathrm{d} v}{\mathrm{d} t}

a=-4t

(b)For maximum positive displacement velocity must be zero at that instant

i.e.v=0

4-2t^2=0

t=\pm \sqrt{2}

substitute the value of t

x=4\times \sqrt{2}-\frac{2}{3}\times 2\sqrt{2}

x=3.77\ m

7 0
2 years ago
Think of something from everyday life that follows a two-dimensional path. It could be a kicked football, a bus that's turning a
OLEGan [10]

Answer:

Let us consider the case of a bus turning around a corner with a constant velocity, as the bus approaches the corner, the velocity at say point A is Va, and is tangential to the curve with direction pointing away from the curve. Also, the velocity at another point say point B is Vb and is also tangential to the curve with direction pointing away from the curve.<em> </em><em>Although the velocity at point A and the velocity at point B have the same magnitude, their directions are different (velocity is a vector quantity), and hence we have a change in velocity. By definition, an acceleration occurs when we have a change in velocity, so the bus experiences an acceleration at the corner whose direction is away from the center of the corner</em>.

The acceleration is not aligned with the direction of travel because<em> the change in velocity is at a tangent (directed away) to the direction of travel of the bus.</em>

4 0
2 years ago
A ball with an initial velocity of 2 m/s rolls for a period of 3 seconds. If the ball is uniformly accelerating at a rate of 3 m
ikadub [295]

Answer: 11 m/s

vinitial=2 m/s

time=3 s

acceleration = 3 m/s^2

vfinal = ?

The key here is that it is a constant acceleration, so we can use the constant acceleration equations. The easiest one to use would be:

vfinal=vinitial + a*t

We need vfinal, so algebraically we are ready to put in numbers into the equation:

vfinal=vinitial + a*t = 2 m/s + (3 m/s^2)*(3 s ) = 11 m/s is the final velocity

7 0
2 years ago
Two speakers both emit sound of frequency 320 Hz, and are in phase. A receiver sits 2.3 m from one speaker, and 2.9 m from the o
satela [25.4K]

Answer:

Option B

Explanation:

The phase difference is found by subtracting the 2.3m for the receiver from the other speaker which is 2.9m hence

Phase difference= 2.9-2.3= 0.6

3 0
2 years ago
Suppose you push a hockey puck of mass m across frictionless ice for a time 1.0 s, starting from rest, giving the puck speed v a
EleoNora [17]
Newton's second law ...Force = momentum change/time.momentum change = Forcextme.also, F=ma -> a=F/m - the more familiar form of Newton's second law
using one of the kinematic equations for m ...  V=u+at; u=0; a=F/m -> V=(F/m)xt.-> t=mV/F using one of the kinematic equations for 2m ... V=u+at; u=0; a=F/2m -> V=(F/2m)xt. -> t=2mV/F (twice as long, maybe ?)
I think I've made a mistake somewhere below, but I think that the principle is right ...using one of the kinematic equations for m ...  s=ut + (1/2)at^2); s=d;u=0;a=F/m; t=1;  -> d=(1/2)(F/m)=F/2musing one of the kinematic equations for 2m ...  s=ut + (1/2)at^2); s=d;u=0;a=F/2m; t=1;  -> d=(1/2)(F/2m)=F/4m (half as far ????? WHAT ???)
3 0
2 years ago
Read 2 more answers
Other questions:
  • A softball is thrown from the origin of an x-y coordinate system with an initial speed of 18 m/s at an angle of 35∘ above the ho
    12·1 answer
  • In Florida, once you have had your learner's license for _________________ without any traffic convictions, you will receive an
    11·1 answer
  • A 4 kg box is on a frictionless 35° slope and is connected via a massless string over a massless, frictionless pulley to a hangi
    11·2 answers
  • An object with charge 4.3x10-5 C pushes another object 0.31 micrometers away with a force of 7 N. What is the total charge of th
    11·1 answer
  • A horizontal spring with spring constant 750 N/m is attached to a wall. An athlete presses against the free end of the spring, c
    6·2 answers
  • . A long 10-cm-diameter steam pipe whose external surface temperature is 110oC passes through some open area that is not protect
    8·2 answers
  • You have a spring that stretches 0.070 m when a 0.10-kg block is attached to and hangs from it at position y0. Imagine that you
    5·1 answer
  • Three point charges are positioned on the x axis. If the charges and corresponding positions are +32 µC at x = 0, +20 µC at x =
    11·1 answer
  • An object traveling in a circular path is accelerating because its
    14·1 answer
  • The integral with respect to time of a force applied to an object is a measure called impulse, and the impulse applied to an obj
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!