answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
4vir4ik [10]
2 years ago
11

4.77 Augment the rectifier circuit of Problem 4.70 with a capacitor chosen to provide a peak-to-peak ripple voltage of (i) 10% o

f the peak output and (ii) 1% of the peak output. In each case: (a) What average output voltage results? (b) What fraction of the cycle does the diode conduct? (c) What is the average diode current? (d) What is the peak diode current?
Physics
1 answer:
goblinko [34]2 years ago
3 0

The question incomplete! The complete question along with answer and explanation is provided below.

Question:

Augment the rectifier circuit of Problem 4.68 with a  capacitor chosen to provide a peak-to-peak ripple voltage of  (i) 10% of the peak output and (ii) 1% of the peak output. In  each case:

(a) What average output voltage results?

(b) What fraction of the cycle does the diode conduct?

(c) What is the average diode current?

(d) What is the peak diode current?

Problem 4.68:

A half-wave rectifier circuit with a 1-kΩ load operates from a 120-V (rms) 60-Hz household supply through  a 10-to-1 step-down transformer. It uses a silicon diode  that can be modeled to have a 0.7-V drop for any current.

Given Information:

Input voltage = 120 Vrms

10 to 1 step-down transformer

Voltage drop at diode = 0.7 V

Load resistance = R = 1 kΩ

Required Information:

 (i) 10% of the peak output and (ii) 1% of the peak output. In  each case:

(a) What average output voltage results?

(b) What fraction of the cycle does the diode conduct?

(c) What is the average diode current?

(d) What is the peak diode current?

Answer:

Case (i)

Vavg = 15.45 V

Conduction of diode = 7.11 %

Iavg = 0.232 A

Ip = 0.449 A

Case (ii)

Vavg = 16.18 V

Conduction of diode = 2.25 %

Iavg = 0.735 A

Ip = 1.453 A

Explanation:

Voltage at the secondary side of the transformer is

Vrms = Vpri/turn ratio

Vrms = 120/10 = 12 V

The relation between rms voltage and peak voltage is

Vp = Vrms/√2

Vp = 12√2 = 16.97 V

Vd = 0.7 V

First we will calculate all the required parameters for the 10% ripple voltage and then for 1% ripple voltage.

case (i) 10% of the peak output:

(a) What average output voltage results?

Average output voltage = Vavg = Vp - Vd - 0.5Vr

Where Vp is the peak output voltage Vd is the voltage drop of diode and Vr is the ripple voltage which is given as a percentage of Vp

Vavg = Vp - Vd - 0.5Vr

Vavg = 16.97 - 0.7 - 0.5[0.1(16.97 - 0.7)]

Vavg = 15.45 V

(b) What fraction of the cycle does the diode conduct?

ω = √2Vr/Vp - Vd

ω = √2*0.1(Vp-Vd)/Vp - Vd

ω = √2*0.1(16.97-0.7)/16.97 - 0.7

ω = 0.447 rad

Conduction of diode = (ω/2π)*100

Conduction of diode = (0.447/2π)*100

Conduction of diode = 7.11 %

(c) What is the average diode current?

Average current = Iavg = Vavg/R[ 1 + π( √2(Vp - Vd)/0.1(Vp-Vd))]

Average current = Iavg = 15.45/1000[ 1 + π( √2(16.97 - 0.7)/0.1(16.97-0.7))]

Average current = Iavg = 0.232 A

(d) What is the peak diode current?

Peak current = Ip = Vavg/R[ 1 + 2π( √2(Vp - Vd)/0.1(Vp-Vd))]

Peak current = Ip = 15.45/1000[ 1 + 2π( √2(16.97 - 0.7)/0.1(16.97-0.7))]

Peak current = Ip = 0.449 A

case (ii) 1% of the peak output:

(a) What average output voltage results?

Vavg = 16.97 - 0.7 - 0.5[0.01(16.97 - 0.7)]

Vavg = 16.18 V

(b) What fraction of the cycle does the diode conduct?

ω = √2*0.01(Vp-Vd)/Vp - Vd

ω = √2*0.01(16.97-0.7)/16.97 - 0.7

ω = 0.1417 rad

Conduction of diode = (0.1417/2π)*100

Conduction of diode = 2.25 %

(c) What is the average diode current?

Average current = Iavg = 16.18/1000[ 1 + π( √2(16.97 - 0.7)/0.01(16.97-0.7))]

Average current = Iavg = 0.735 A

(d) What is the peak diode current?

Peak current = Ip = 16.18/1000[ 1 + 2π( √2(16.97 - 0.7)/0.01(16.97-0.7))]

Peak current = Ip = 1.453 A

You might be interested in
A shift in one fringe in the Michelson-Morley experiment corresponds to a change in the round-trip travel time along one arm of
olya-2409 [2.1K]

Explanation:

When Michelson-Morley apparatus is turned through 90^{o} then position of two mirrors will be changed. The resultant path difference will be as follows.

      \frac{lv^{2}}{\lambda c^{2}} - (-\frac{lv^{2}}{\lambda c^{2}}) = \frac{2lv^{2}}{\lambda c^{2}}

Formula for change in fringe shift is as follows.

          n = \frac{2lv^{2}}{\lambda c^{2}}

       v^{2} = \frac{n \lambda c^{2}}{2l}

             v = \sqrt{\frac{n \lambda c^{2}}{2l}}

According to the given data change in fringe is n = 1. The data is Michelson and Morley experiment is as follows.

             l = 11 m

    \lambda = 5.9 \times 10^{-7} m

           c = 3.0 \times 10^{8} m/s

Hence, putting the given values into the above formula as follows.

            v = \sqrt{\frac{n \lambda c^{2}}{2l}}

               = \sqrt{\frac{1 \times (5.9 \times 10^{-7} m) \times (3.0 \times 10^{8})^{2}}{2 \times 11 m}}

               = 2.41363 \times 10^{9} m/s

Thus, we can conclude that velocity deduced is 2.41363 \times 10^{9} m/s.

3 0
1 year ago
When a test charge q0 = 2 nC is placed at the origin, it experiences a force of 8 times 10-4 N in the positive y direction. What
ser-zykov [4K]

Answer:

Electric field, E=4\times 10^5\ N/C

Explanation:

It is given that,

Magnitude of charge, q_o=2\ nC=2\times 10^{-9}\ C

Force experienced, F=8\times 10^{-4}\ N

We need to find the electric field at the origin. It is given by :

F=q_o\times E

E=\dfrac{F}{q_o}

E=\dfrac{8\times 10^{-4}}{2\times 10^{-9}}

E=4\times 10^5\ N/C

So, the electric field at the origin is 4\times 10^5\ N/C. Hence, this is the required solution.

3 0
1 year ago
Ocean waves are observed to travel to the right along the water surface during a developing storm. A Coast Guard weather station
Nuetrik [128]

Answer:

The amplitude is  2.3 m

The Wavelength is 8.6 m

The frequency is 0.16 Hz

The time period is 6.25 sec

The equation that governs the behavior is  Y=(2.3)sin[(\frac{2\pi}{8.6} )x -(\frac{2\pi}{6.2} )t]

Explanation:

The explanation is shown on the first uploaded image

6 0
2 years ago
3. In 1989, Michel Menin of France walked on a tightrope suspended under a
Tamiku [17]

Answer: 80m

Explanation:

Distance of balloon to the ground is 3150m

Let the distance of Menin's pocket to the ground be x

Let the distance between Menin's pocket to the balloon be y

Hence, x=3150-y------1

Using the equation of motion,

V^2= U^s + 2gs--------2

U= initial speed is 0m/s

g is replaced with a since the acceleration is under gravity (g) and not straight line (a), hence g is taken as 10m/s

40m/s is contant since U (the coin is at rest is 0) hence V =40m/s

Slotting our values into equation 2

40^2= 0^2 + 2 * 10* (3150-y)

1600 = 0 + 63000 - 20y

1600 - 63000 = - 20y

-61400 = - 20y minus cancel out minus on both sides of the equation

61400 = 20y

Hence y = 61400/20

3070m

Hence, recall equation 1

x = 3150 - 3070

80m

I hope this solve the problem.

6 0
2 years ago
Why does carpet tend to produce differences in static electricity more that hardwood or tile floors
Makovka662 [10]

Answer:

This is because the rubbing releases negative charges, called electrons, which can build up on one object to produce a static charge. For example, when you shuffle your feet across a carpet, electrons can transfer onto you, building up a static charge on your skin.

Explanation:

This is because the rubbing releases negative charges

4 0
2 years ago
Other questions:
  • A penny falls from a windowsill which is 25.0 m above the sidewalk. How much time does a passerby on the sidewalk below have to
    9·1 answer
  • An amusement park ride spins you around in a circle of radius 2.5 m with a speed of 8.5 m/s. If your mass is 75 kg, what is the
    5·2 answers
  • An object is 6.0 cm in front of a converging lens with a focal length of 10 cm.Use ray tracing to determine the location of the
    9·1 answer
  • Divers found two substances on the bottom of the ocean. At room temperature, both substances are liquid. Scientists then transfe
    9·2 answers
  • A and B, move toward one another. Object A has twice the mass and half the speed of object B. Which of the following describes t
    13·1 answer
  • On a guitar, the lowest toned string is usually strung to the E note, which produces sound at 82.4 82.4 Hz. The diameter of E gu
    12·1 answer
  • Consider three identical metal spheres, A, B, and C. Sphere A carries a charge of -2.0 µC; sphere B carries a charge of -6.0 µC;
    6·1 answer
  • A company designed and sells an ultrasonic​ receiver, which detects sounds unable to be heard by the human ear. The receiver can
    5·1 answer
  • An object is moving east, and its velocity changes from 65 m/s to 25 m/s in 10 seconds. Which describes the acceleration? negati
    13·1 answer
  • An astronaut drops a feather from 1.2 m above
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!