(a) The y-component or vertical velocity is calculated using:
Vy = Vsin(∅)
(b) The x-component or horizontal velocity is calculated using:
Vx = Vcos(∅)
Assuming 280 miles is the total distance travelled:
Let b = boat speed in still water
Let c = current speed.
For the downstream trip the speed is b + c. In 7 hours at the speed of (b + c) mph the boat travels 140 miles.
7(b + c) = 140 .............(1)
For the upstream trip the speed is b - c. In 14 hours at the speed of (b - c) mph the boat travels 140 miles.
14(b - c) = 140 ............(2)
The left hand sides of equations (1) and (2) are equal. Therefore we can write
7b + 7c = 14b - 14c ...........(3)
Rearranging equation (3) we get
21c = 7b
c = b/3 .......................(4)
The value for c obtained in equation (4) should now be substituted into equation (1) which can then be solved to find the value of b.
Answer:
457.81 Hz
Explanation:
From the question, it is stated that it is a question under Doppler effect.
As a result, we use this form
fo = (c + vo) / (c - vs) × fs
fo = observed frequency by observer =?
c = speed of sound = 332 m/s
vo = velocity of observer relative to source = 45 m/s
vs = velocity of source relative to observer = - 46 m/s ( it is taking a negative sign because the velocity of the source is in opposite direction to the observer).
fs = frequency of sound wave by source = 459 Hz
By substituting the the values to the equation, we have
fo = (332 + 45) / (332 - (-46)) × 459
fo = (377/ 332 + 46) × 459
fo = (377/ 378) × 459
fo = 0.9974 × 459
fo = 457.81 Hz