Answer:
Terminal velocity of object = 12.58 m/s
Explanation:
We know that the terminal velocity is attained when drag force and gravitational force are of the same magnitude.
Gravitational force = mg = 80 * 9.8 = 784 N
Drag force = 
Equating both, we have

So v = 12.58 m/s or v = -15.58 m/s ( not possible)
So terminal velocity of object = 12.58 m/s
The electrical potential energy of a charge q located at a point at potential V is given by

Therefore, if the charge must move between two points at potential V1 and V2, the difference in potential energy of the charge will be

In our problem, the electron (charge e) must travel across a potential difference V. So the energy it will lose traveling from the metal to the detector will be equal to

Therefore, if we want the electron to reach the detector, the minimum energy the electron must have is exactly equal to the energy it loses moving from the metal to the detector:
Answer:
90.77%
its capacity utilization rate for the month is 90.77%
Explanation:
The capacity utilisation rate can be expressed mathematically as;
Capacity utilisation rate = capacity used/Best operating level × 100%
Given;
Total Number of production time = 205hours
Production output/capacity used = 21400 units
Best operation rate = 115units/hour
Best operation output for the month of July( at best operation level )
=115units/hour × 205 hours = 23575 units
Capacity utilisation rate = 21400/23575 × 100%
= 90.77%
<span>Answer:The weight of the door creates a CCW torque given by
Tccw = 145 N*3.13 m / 2
You need a CW torque that's equal to that
Tcw = F*2.5 m*sin20</span>
Explanation:
The structural diversity of carbon-based molecules is determined by following properties:
1. the ability of those bonds to rotate freely,
2.the ability of carbon to form four covalent bonds,
3.the orientation of those bonds in the form of a tetrahedron.