Rw^2 = GmM/r^2
<span> Leads to
</span><span> w^2 r^3 = GM
</span><span> (2pi /T) ^2 r^3 = GM
</span><span> 4pi^2 r^3 = GM T^2
</span><span> r^3 = GM T^2 / 4pi^2
</span><span> Work out r^3 then r.
</span> T = 125 min = 125(60) = 7500 s
<span> R = 6.38E6 m
</span><span> m = 5.97E24 kg
</span><span> G = 6.673E-11
</span> r=<span>
8279791.78</span><span> m
Since r = radius R of Earth + height above urface,h
</span><span> h = r - R = </span><span>
8279791.78 - </span>6.38E6 = <span>
<span>1899791.78 m
h=</span></span><span>
<span>1899.79178 Km</span></span>
Answer:
9.99
Explanation:
The value of (997)^1/3
(997)^1/3
997 = (1000 - 3)
(1000 - 3)^1/3
Expanding :
[1000(1 - 3/1000)]^1/3
1000^1/3 * (1 - 3/1000)^1/3
Cube root of 1000
10 * (1 - 3/1000 * 1/3)
10 * (1 - 1/1000)
10 * (1 - 0.001)
10(0.999)
= 9.99
Hence, the value of (997)^1/3 according to binomial theorem is 9.99
The kinetic energy of any moving object is
(1/2) (mass) (speed²) .
For the object you described, that's
(1/2) (100 kg) (12.5 m/s)²
= (50 kg) (156.25 m²/s²)
= 7,812.5 joules
______________________________
Your attachment is way out of focus, and impossible to read.
Answer:
So Tammy must move with speed 4.76 m/s in opposite direction of Jackson
Explanation:
As per law of conservation of momentum we know that there is no external force on it
So here we can say that initial momentum of the system must be equal to the final momentum of the system
now we have

final they both comes to rest so here we can say that final momentum must be zero
now we have


Answer:
THE FIRST ONE YOU SHOULD TELL HIM AND THE LAST ONE YOU SHOUDENT DO BECAUSE HE WILL DO IT AGAIN AND EXPECT OTHERS TO CLEAN UP AFTER HIM
Explanation: