answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mrac [35]
1 year ago
15

Astronauts in the International Space Station must work out every day to counteract the effects of weightlessness. Researchers h

ave investigated if riding a stationary bicycle while experiencing artificial gravity from a rotating platform gives any additional cardiovascular benefit. What frequency of rotation, in rpm, is required to give an acceleration of 1.4g to an astronaut's feet, if her feet are 1.1m from the platform's rotational axis?
Physics
1 answer:
Snowcat [4.5K]1 year ago
5 0

Answer:

  33.725 rpm

Explanation:

The relationship between rotational speed in radians per second and acceleration is ...

  \omega=\sqrt{\dfrac{a}{r}}

We want the rotation rate in RPM, so we need the conversion ...

  \text{RPM}=\dfrac{\text{rad}}{\text{s}}\cdot\dfrac{1\,\text{rev}}{2\pi\,\text{rad}}\cdot\dfrac{60\,\text{s}}{1\,\text{min}}

Then the required rotational speed in RPM is ...

  RPM=\sqrt{\dfrac{a}{r}}\cdot\dfrac{30}{\pi}=\dfrac{30}{\pi}\sqrt{\dfrac{1.4\cdot 9.8}{1.1}}\approx 33.725

The rotation rate needs to be about 33.7 rpm to give an acceleration of 1.4g at the astronaut's feet.

You might be interested in
Richardson pulls a toy 3.0 m across the floor by a string, applying a force of0.50 N. During the first meter, the string is para
Anastasy [175]

Answer:

Total Work done =0.65 joule

Explanation:

Work done is given Mathematically as

W=F *d

Where w=work done in joules

F=applied force

d= distance moved

The work done to move the toy accros the first meter is

W1=0.5*1

W1=0.5joule

The work done to move the toy across the next 2m at an angle of 30° is

.W2=0.5*2cos30

W2=0.5*2*0.154

W2=0.154joule

Hence total work done is

W1+W2=0.5+0.154

Total Work done =0.65 joule

7 0
1 year ago
In an isolated system, the total heat given off by warmer substances equals the total heat energy gained by cooler substances. N
galina1969 [7]

Answer:

The temperature of the cooler substance was close to the room temperature. Therefore, the system experienced less change

Explanation:

Generally, in a closed system containing two bodies at different temperatures, there is a flow of heat energy from the body at a higher temperature to the body at a lower temperature. The effect is more significant when there is a large temperature difference between the bodies. However, if the temperature difference is small or insignificant, the change will be less.

3 0
1 year ago
Susan and Hannah are each riding a swing. Susan has a mass of 25 kilograms, and Hannah has a mass of 30 kilograms. Susan’s swing
Charra [1.4K]

Answer:

Kinetic energy is given by:

K.E. = 0.5 m v²

Susan has mass, m = 25 kg

Velocity with which Susan moves is, v = 10 m/s

Hannah has mass, m' = 30 kg

Velocity with which Hannah moves is, v' = 8.5 m/s

<u>Kinetic energy of Susan:</u>

0.5 m v² = 0.5 × 25 kg × (10 m/s)² = 1250 J

<u>Kinetic energy of Hannah:</u>

0.5 m v'² = 0.5 × 30 kg × (8.5 m/s)² = 1083.75 J

Susan's kinetic energy is <u>1250 J </u>and Hannah's kinetic energy is <u>1083.75 J</u>.

Since kinetic energy is dependent on mass and square of speed. Thus, speed has a greater effect than mass. As it is evident from the above example. Susan has greater kinetic energy due to higher speed than Hannah.

4 0
2 years ago
Racing greyhounds are capable of rounding corners at very high speeds. A typical greyhound track has turns that are 45-m-diamete
Margarita [4]

Explanation:

It is given that,

Diameter of the semicircle, d = 45 m

Radius of the semicircle, r = 22.5 m      

Speed of greyhound, v = 15 m/s

The greyhound is moving under the action of centripetal acceleration. Its formula is given by :

a=\dfrac{v^2}{r}

a=\dfrac{(15)^2}{22.5}

a=10\ m/s^2

We know that, g=9.8\ m/s^2

a=\dfrac{10\times g}{9.8}

a=1.02\ g

Hence, this is the required solution.                                              

5 0
1 year ago
Steep safety ramps are built beside mountain highways to enable vehicles with defective brakes to stop safely. A truck enters a
Furkat [3]

Answer:

bfghhg

Explanation:

6 0
2 years ago
Other questions:
  • A 1-m-long monopole car radio antenna operates in the AM frequency of 1.5 MHz. How muchcurrent is required to transmit 4 W of po
    9·1 answer
  • Tyson throws a shot put ball weighing 7.26 kg. At a height of 2.1 m above the ground, the mechanical energy of the ball is 172.1
    15·2 answers
  • The Great Sandini is a 60-kg circus performer who is shot from a cannon (actually a spring gun). You don’t find many men of his
    12·1 answer
  • Two objects (45.0 and 21.0 kg) are connected by a massless string that passes over a massless, frictionless pulley. The pulley h
    7·1 answer
  • A wave with an amplitude of 9.3 mm is traveling along a string whose linear mass density is 230 g/m and whose tension is 65 N. I
    7·1 answer
  • A parallel-plate capacitor with a 4.9 mm plate separation is charged to 57 V . Part A With what kinetic energy, in eV, must a pr
    13·1 answer
  • Derive an expression for the gravitational potential energy of a system consisting of Earth and a brick of mass m placed at Eart
    5·1 answer
  • a worker climbs a ladder and does 8 J of work on a 2 N object. What is the distance they lift the object
    5·1 answer
  • A 12.0 kg mass, fastened to the end of an aluminum wire with an unstretched length of 0.50 m, is whirled in a vertical circle wi
    7·2 answers
  • A trumpet player on a moving railroad flatcar moves toward a second trumpet player standing alongside the track both play a 490
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!