Answer:
a)
Explanation:
- A block sliding down an inclined plane, is subject to two external forces along the slide.
- One is the component of gravity (the weight) parallel to the incline.
- If the inclined plane makes an angle θ with the horizontal, this component (projection of the downward gravity along the incline, can be written as follows:

(taking as positive the direction of the movement of the block)
- The other force, is the friction force, that adopts any value needed to meet the Newton's 2nd Law.
- When θ is so large, than the block moves downward along the incline, the friction force can be expressed as follows:
- The normal force, adopts the value needed to prevent any vertical movement through the surface of the incline:
- In equilibrium, both forces, as defined in (1), (2) and (3) must be equal in magnitude, as follows:

- As the block is moving, if the net force is 0, according to Newton's 2nd Law, the block must be moving at constant speed.
- In this condition, the friction coefficient is the kinetic one (μk), which can be calculated as follows:

To solve this problem it is necessary to apply the concepts related to Newton's second law and the kinematic equations of movement description.
Newton's second law is defined as

Where,
m = mass
a = acceleration
From this equation we can figure the acceleration out, then



From the cinematic equations of motion we know that

Where,
Final velocity
Initial velocity
a = acceleration
x = displacement
There is not Final velocity and the acceleration is equal to the gravity, then





From the equation of motion where acceleration is equal to the velocity in function of time we have




Therefore the time required is 0.0705s
Answer:
The angular speed after 6s is
.
Explanation:
The equation

relates the moment of inertia
of a rigid body, and its angular acceleration
, with the force applied
at a distance
from the axis of rotation.
In our case, the force applied is
, at a distance
, to a ring with the moment of inertia of
; therefore, the angular acceleration is



Therefore, the angular speed
which is

after 6 seconds is


Answer:
Explanation:
I dont know if this will help but A two force member is a body that has forces (and only forces, no moments) acting on it in only two locations. In order to have a two force member in static equilibrium, the net force at each location must be equal, opposite, and collinear.
Answer:
P=740 KPa
Δ=7.4 mm
Explanation:
Given that
Diameter of plunger,d=30 mm
Diameter of sleeve ,D=32 mm
Length .L=50 mm
E= 5 MPa
n=0.45
As we know that
Lateral strain



We know that




So the axial pressure


P=740 KPa
The movement in the sleeve


Δ=7.4 mm