answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
riadik2000 [5.3K]
2 years ago
8

If a rock is thrown upward on the planet mars with a velocity of 14 m/s, its height (in meters) after t seconds is given by h =

14t − 1.86t2. (a) find the velocity of the rock after two seconds.
Physics
1 answer:
crimeas [40]2 years ago
6 0

<u>Answer:</u>

 Velocity of rock after 2 seconds = 6.56 m/s

<u>Explanation:</u>

 We have equation of motion , s= ut+\frac{1}{2} at^2, s is the displacement, u is the initial velocity, a is the acceleration and t is the time.

Here height of rock in meters, h = 14t-1.86t^2

Comparing both the equations

    We will get initial velocity = 14 m/s(already given) and \frac{1}{2} a = -1.86

     So,  Acceleration, a = -3.72 m/s^2

 Now we have equation of motion, v = u + at, where v is the final velocity, u is the initial velocity, a is the acceleration and t is the time taken.

 When time is 2 seconds we need to find final velocity.

     v = 14 - 3.72 * 2 = 6.56 m/s.

  So, Velocity of rock after 2 seconds = 6.56 m/s  

You might be interested in
A car hits another and the two bumpers lock together during the collision. is this an elastic or inelastic collision?
valkas [14]
Inelastic.
If it was elastic, they'd bump right off each other. But since they've been locked, or stuck together, this is inelastic.
8 0
2 years ago
When driving in heavy rain, or on a flooded road, your tires can ride on a thin film of water like skis;
Simora [160]
The answer is letter a. It is best to slow down in situations of heavy rain or flooded road as skid could be the result if you lose out of control because the driver isn't slowing down. That is why it is being said that tires can ride on a thin film of water skis as it could skid if it has lost control if the driver hadn't slowed down.
7 0
2 years ago
I take 1.0 kg of ice and dump it into 1.0 kg of water and, when equilibrium is reached, I have 2.0 kg of ice at 0°C. The water w
VashaNatasha [74]

Answer:

.c. −160°C

Explanation:

In the whole process one kg of water at  0°C loses heat to form one kg of ice and heat lost by them is taken up by ice at −160°C . Now see whether heat lost is equal to heat gained or not.

heat lost by 1 kg of water at  0°C

= mass x latent heat

= 1 x 80000 cals

= 80000 cals

heat gained by ice at −160°C to form ice at  0°C

= mass x specific heat of ice x rise in temperature

= 1 x .5 x 1000 x 160

= 80000 cals

so , heat lost = heat gained.

5 0
2 years ago
The 1.5-in.-diameter shaft AB is made of a grade of steel with a 42-ksi tensile yield stress. Using the maximum-shearing-stress
PolarNik [594]

Answer:

T = 0.03 Nm.

Explanation:

d = 1.5 in = 0.04 m

r = d/2 = 0.02 m

P = 56 kips = 56 x 6.89 = 386.11 MPa

σ = 42-ksi = 42 x 6.89 = 289.58 MPa

Torque = T =?

<u>Solution:</u>

σ = (P x r) / T

T = (P x r) / σ

T = (386.11 x 0.02) / 289.58

T = 0.03 Nm.

7 0
2 years ago
A hydrogen discharge lamp emits light with two prominent wavelengths: 656 nm (red) and 486 nm (blue). The light enters a flint-g
mezya [45]

Answer:

The angle between the red and blue light is 1.7°.

Explanation:

Given that,

Wavelength of red = 656 nm

Wavelength of blue = 486 nm

Angle = 37°

Suppose we need to find the angle between the red and blue light as it leaves the prism

n_{r}=1.572

n_{b}=1.587

We need to calculate the angle for red wavelength

Using Snell's law,

n_{r}\sin\theta_{i}=n_{a}\sin\theta_{r}

Put the value into the formula

1.572\sin37=1\times\sin\theta_{r}

\theta_{r}=\sin^{-1}(\dfrac{1.572\sin37}{1})

\theta_{r}=71.0^{\circ}

We need to calculate the angle for blue wavelength

Using Snell's law,

n_{b}\sin\theta_{i}=n_{a}\sin\theta_{b}

Put the value into the formula

1.587\sin37=1\times\sin\theta_{b}

\theta_{b}=\sin^{-1}(\dfrac{1.587\sin37}{1})

\theta_{b}=72.7^{\circ}

We need to calculate the angle between the red and blue light

Using formula of angle

\Delta \theta=\theta_{b}-\theta_{r}

Put the value into the formula

\Delta \theta=72.7-71.0

\Delta \theta=1.7^{\circ}

Hence, The angle between the red and blue light is 1.7°.

8 0
2 years ago
Other questions:
  • Why is platinum used sparingly in technological applications?
    12·1 answer
  • An atom of argon has a radius of 71.pm and the average orbital speed of the electrons in it is about ×3.9107/ms. calculate the l
    10·1 answer
  • Which is the BEST example of refraction?
    13·2 answers
  • if you apply a Force of F1 to area A1 on one side of a hydraulic jack, and the second side of the jack has an area that is twice
    7·1 answer
  • Tapping the surface of a pan of water generates 17.5 waves per second. If the wavelength of each wave is 45 cm, what is the spee
    6·1 answer
  • The velocity of a an object in linear motion changes from +25 meters per second to +15 meters per second in 2.0 seconds.
    9·1 answer
  • If a set of displacement vectors laid head to tail make a closed polygon, what is the resultant vector?
    8·1 answer
  • Ugonna stands at the top of an incline and pushes a 100−kg crate to get it started sliding down the incline. The crate slows to
    7·1 answer
  • An object is moving back and forth on the x-axis according to the equation x(t) = 3sin(20πt), t&gt; 0, where x(t) is measured in
    5·1 answer
  • What results when energy is transformed while juggling three bowling pins?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!