Answer:
75 m
Explanation:
The horizontal motion of the projectile is a uniform motion with constant speed, since there are no forces acting along the horizontal direction (if we neglect air resistance), so the horizontal acceleration is zero.
The horizontal component of the velocity of the projectile is

and it is constant during the motion;
the total time of flight is
t = 5 s
Therefore, we can apply the formula of the uniform motion to find the horizontal displacement of the projectile:

The answer for this problem is clarified through this, the
system is absorbing (+). And now see that it uses that the SURROUNDINGS are
doing 84 KJ of work. Any time a system is overshadowing work done on it by the
surroundings the sign will be +. So it's just 12.4 KJ + 4.2 = 16.6 KJ.
You want v2 = v1 + at
v is measured in m/s, a in m/s2, and t in s.
the dimensions multiply like algebraic quantities.
so because v2 is measured in m/s, then (v1 + at) has to come out in m/s
the units for (v1 + at) are (m/s) + (m/s2)(s)
time "s" cancels out one acceleration "s", so it comes ut to (m/s) + (m/s), which = (m/s).
if you had (v1t + a), then you would have (m/s)(s) + (m/s2) which = (m) + (m/s2), which doesn't work.
Answer:
28.6260196842 m
Explanation:
Let h be the height of the building
t = Time taken by the watermelon to fall to the ground
Time taken to hear the sound is 2.5 seconds
Time taken by the sound to travel the height of the cliff = 2.5-t
Speed of sound in air = 340 m/s
For the watermelon falling

For the sound
Distance = Speed × Time

Here, distance traveled by the stone and sound is equal


The time taken to fall down is 2.4158 seconds

Height of the buidling is 28.6260196842 m
Answer:bowling ball has greater kinetic energy
Explanation:
Kinetic energy of bowling ball:
mass=m=5kg
Velocity=v=6m/s
Kinetic energy =ke
Ke=0.5 x m x v x v
Ke=0.5 x 5 x 6 x 6
Ke=90J
Kinetic energy of ship:
mass=m=120000kg
velocity=v=0.02m/s
Ke=0.5 x m x v x v
Ke=0.5 x 120000 x 0.02 x 0.02
Ke=24J