Answer:
mass of the person walking to west is 65 kg.
Given:
Momentum = 52 
Speed = 0.8 
To find:
Mass of the person = ?
Formula used:
Momentum is given by,
P = m × v
Where, P = momentum
m = mass
v = speed
Solution:
Momentum is given by,
P = m × v
Where, P = momentum
m = mass
v = speed
Mass = 
m = 
m = 65 kg
Thus, mass of the person walking to west is 65 kg.
Answer
given,
mass of the person, m = 50 Kg
length of scaffold = 6 m
mass of scaffold, M= 70 Kg
distance of person standing from one end = 1.5 m
Tension in the vertical rope = ?
now equating all the vertical forces acting in the system.
T₁ + T₂ = m g + M g
T₁ + T₂ = 50 x 9.8 + 70 x 9.8
T₁ + T₂ = 1176...........(1)
system is equilibrium so, the moment along the system will also be zero.
taking moment about rope with tension T₂.
now,
T₁ x 6 - mg x (6-1.5) - M g x 3 = 0
'3 m' is used because the weight of the scaffold pass through center of gravity.
6 T₁ = 50 x 9.8 x 4.5 + 70 x 9.8 x 3
6 T₁ = 4263
T₁ = 710.5 N
from equation (1)
T₂ = 1176 - 710.5
T₂ = 465.5 N
hence, T₁ = 710.5 N and T₂ = 465.5 N
They would be likely to be underweight. This is because the role of villi is to increase absorption of soluble molecules, they do this by increasing surface area for absorption to occur across.
If the person has less villi than normal in their small intestine, then the surface area will not be as large meaning there is less area for absorption to occur across so less soluble molecules will be absorbed.
1 watt = 1 joule/second
1 horsepower = 746 watts = 746 joule/second
(150 horsepower) x (746 watt/HP) x (1 joule/sec / watt) x (10 sec)
= (150 x 746 x 1 x 10) joule = 1,119,000 joules .
if correct plz mark brainly