Answer:(a)891.64 N
(b)0.7
Explanation:
Mass of crate 
Crate slows down in 
initial speed 
inclination 
From Work-Energy Principle
Work done by all the Forces is equal to change in Kinetic Energy




change in kinetic energy

(b)Coefficient of sliding friction



and 


Answer:
The expression of gravitational field due to mass
at a distance 
Explanation:
We have given mass is 
Distance of the point where we have to find the gravitational field is 
Gravitational constant G
We have to find the gravitational filed
Gravitational field is given by 
This will be the expression of gravitational field due to mass
at a distance 
This problem has three questions I believe:
>
How hard does the floor push on the crate?
<span>We have to find the net
vertical (normal) Fn force which results from Fp and Fg.
We know that the normal component of Fg is just Fg, which is equal to as 1110N.
From the geometry, the normal component of Fp can be calculated:
Fpn = Fp * cos(θp)
= 1016.31 N * cos(53)
= 611.63 N
The total normal force Fn then is:
Fn = Fg + Fpn
= 1110 + 611.63
=
1721.63 N</span>
> Find the friction
force on the crate
<span>We
have to look for the net horizontal force Fh which results from Fp and Fg.
Since Fg is a normal force entirely, so we can say that the
horizontal component is zero:
Fh = Fph + Fgh
= (Fp * sin(θp)) + 0
= 1016.31 N * sin(53)
=
811.66 N</span>
> What is the minimum
coefficient of static friction needed to prevent the crate from slipping on the
floor?
We just need to compute the
ratio Fh to Fn to get the minimum μs.
μs = Fh / Fn
= 811.66 N / 1721.63 N
<span>=
0.47</span>
Answer:
The young tree, originally bent, has been brought into the vertical position by adjusting the three guy-wire tensions to AB = 7 lb, AC = 8 lb, and AD = 10 lb. Determine the force and moment reactions at the trunk base point O. Neglect the weight of the tree.
C and D are 3.1' from the y axis B and C are 5.4' away from the x axis and A has a height of 5.2'
Explanation:
See attached picture.
Answer:
a) When its length is 23 cm, the elastic potential energy of the spring is
0.18 J
b) When the stretched length doubles, the potential energy increases by a factor of four to 0.72 J
Explanation:
Hi there!
a) The elastic potential energy (EPE) is calculated using the following equation:
EPE = 1/2 · k · x²
Where:
k = spring constant.
x = stretched lenght.
Let´s calculate the elastic potential energy of the spring when it is stretched 3 cm (0.03 m).
First, let´s convert the spring constant units into N/m:
4 N/cm · 100 cm/m = 400 N/m
EPE = 1/2 · 400 N/m · (0.03 m)²
EPE = 0.18 J
When its length is 23 cm, the elastic potential energy of the spring is 0.18 J
b) Now let´s calculate the elastic potential energy when the spring is stretched 0.06 m:
EPE = 1/2 · 400 N/m · (0.06 m)²
EPE = 0.72 J
When the stretched length doubles, the potential energy increases by a factor of four to 0.72 J