Answer:
0.5 m
Explanation:
Givens:
ym1 = 2.5 mm
ym2 = 4.5 mm
Ф_1=π / 4
Ф_2=π / 2
We have 2 ways to solve this problem. The first one given that the 2 waves have the frequency then we know that the resultant wave amplitude is
Ym = (ym1 + ym2)cos(Ф_2/2)
By substitution we have
Ym= (0.025 + 0.045)cos(π/4) = 0.496 m
The second one is it treat them as Phasors where the phase between them is Ф_2=π / 2 Therefore
Ym^2=(ym1^2+ym2^2)
So we have Ym=√0.025^2+0.045^2
= 0.5 m
Answer:
Diameter decreases by the diameter of 0.0312 m.
Explanation:
Given that,
Bulk modulus = 14.0 × 10¹⁰ N/m²
Diameter d = 2.20 m
Depth = 2.40 km
Pressure = ρ g h = 1030 × 9.81 × 2.4 × 1000
= 24.25 × 10⁶ N/m²
Volume = 

Bulk modulus is equal to

now



Δ r = -0.0156 m
change in diameter
Δ d = -2 × 0.0156
Δ d = -0.0312 m
Diameter decreases by the diameter of 0.0312 m.
Answer:
Statement 1) False
Statement 2) False
Statement 3) True
Explanation:
The uncertainty principle states that " in a physical system certain quantities cannot be measured with random precision no matter whatever the least count of the instrument is" or we can say while measuring simultaneously the position and momentum of a particle the error involved is

Thus if we measure x component of momentum of a particle with 100% precision we cannot measure it's position 100% accurately as the error will be always there.
Statement 1 is false since measurement of x and y positions has no relation to uncertainty.
Statement 2 is false as both the momentum components can be measured with 100% precision.
Statement 3 is true as as demanded by uncertainty principle since they are along same co-ordinates.
Note that
1 yd = 0.9144 m
Therefore,
The length of an American Football field is
(100 yds)*(09144 m/yd) = 91.44 m
Because the soccer field is 110 m long, its length exceeds the American Football Field by
100 - 91.44 = 8.56 m
or
(8.56/.9144) = 9.36 yd
This difference is equivalent to (8.56/91.44)*100 = 9.4%
Answer:
The Soccer Field is longer by
8.56 m, or
9.36 yd, or
9.4%
#1
Volume of lead = 100 cm^3
density of lead = 11.34 g/cm^3
mass of the lead piece = density * volume


so its weight in air will be given as

now the buoyant force on the lead is given by


now as we know that


so by solving it we got
V = 11.22 cm^3
(ii) this volume of water will weigh same as the buoyant force so it is 0.11 N
(iii) Buoyant force = 0.11 N
(iv)since the density of lead block is more than density of water so it will sink inside the water
#2
buoyant force on the lead block is balancing the weight of it




(ii) So this volume of mercury will weigh same as buoyant force and since block is floating here inside mercury so it is same as its weight = 11.11 N
(iii) Buoyant force = 11.11 N
(iv) since the density of lead is less than the density of mercury so it will float inside mercury
#3
Yes, if object density is less than the density of liquid then it will float otherwise it will sink inside the liquid