It is given that by using track and cart we can record the time and the distance travelled and also the speed of the cart can be recorded. With all this data we can solve questions on the laws of motion.
Like using the first law of motion we can determine the force of gravity acting on the cart that has moved a certain distance and the velocity or the speed of card has already been registered and since time is known putting the values in formula would help us calculate the gravitational pull acting on cart.
Answer:
A) To true. he pressure at the bottom of the pool decreases by exactly the same amount as the atmospheric pressure decreases
Explanation:
Let us propose the solution of this problem before seeing the final statements. The pressure increases with the depth of raposin due to the weight of water that is above the person and also the pressure exerted by the atmosphere on the entire pool, the equation describing this process is
P =
+ ρ g y
Where
is the atmospheric pressure, ρ the water density, and 'y' the depth measured from the surface.
Let's examine this equation in we see that the total pressure is directly proportional to the atmospheric pressure and depth
Now we can examine the claims
A) To true. State agreement or with the equation above
B) False. Pressure changes with atmospheric pressure
C) False. It's the opposite
D) False. They are directly proportional
Answer:

Explanation:
Given that

re= 46 cm
Vp= 180 m/s
We know that


So

Now by putting the all given values in the questions


So the average electric field is
.
Answer:
r= 2.17 m
Explanation:
Conceptual Analysis:
The electric field at a distance r from a charge line of infinite length and constant charge per unit length is calculated as follows:
E= 2k*(λ/r) Formula (1)
Where:
E: electric field .( N/C)
k: Coulomb electric constant. (N*m²/C²)
λ: linear charge density. (C/m)
r : distance from the charge line to the surface where E calculates (m)
Known data
E= 2.9 N/C
λ = 3.5*10⁻¹⁰ C/m
k= 8.99 *10⁹ N*m²/C²
Problem development
We replace data in the formula (1):
E= 2*k*(λ/r)
2.9= 2*8.99 *10⁹*(3.5*10⁻¹⁰/r)
r =( 2*8.99 *10⁹*3.5*10⁻¹⁰) / (2.9)
r= 2.17 m
Answer:
Answer; v= 1.2654m/s
T= 110.76N
Explanation:
Apply Momentum Principle
Fdtro - Mgridt = Iow +Mvr
Fdtro - Mgridt = mK2 v/r1 + Mvr1
85 x 3x 0.345 -11 x 9.81 x 0.23 x 3 =30 x 0.25 x 0.25 x v/0.23 + 11 x v x 0.23 =
v = 1.2654m/s
To find the timed average value
Tdt -Mgdt =MV
T x 3 - 11 x 9.81 x 3 = 11 x 0.778
T= 110.76N