Answer:
Explanation:
As it’s difficult to catch it from up.
Gravitational force will pull us when we jump.
If gravity was not there, he could catch the ball. But he will float in the sky after that.
That’s the answer
Answer:
A=0.199
Explanation:
We are given that
Mass of spring=m=450 g=
Where 1 kg=1000 g
Frequency of oscillation=
Total energy of the oscillation=0.51 J
We have to find the amplitude of oscillations.
Energy of oscillator=
Where
=Angular frequency
A=Amplitude

Using the formula



Hence, the amplitude of oscillation=A=0.199
The velocity of the aircraft relative to the ground is 240 km/h North
Explanation:
We can solve this problem by using vector addition. In fact, the velocity of the aircraft relative to the ground is the (vector) sum between the velocity of the aircraft relative to the air and the velocity of the air relative to the ground.
Mathematically:

where
v' is the velocity of the aircraft relative to the ground
v is the velocity of the aircraft relative to the air
is the velocity of the air relative to the ground.
Taking north as positive direction, we have:
v = +320 km/h
(since the air is moving from North)
Therefore, we find
(north)
Learn more about vector addition:
brainly.com/question/4945130
brainly.com/question/5892298
#LearnwithBrainly
We are given: Final velocity (
)=20 m/s .
Time t= 2.51 s and
distance s = 82.9 m.
We know, equation of motion

Let us plug values of final velocity, and time in above equation.


Subtracting 2.51a from both sides, we get
-----------equation(1)
Using another equation of motion

Plugging values of vi =20-2.51a, t=2.51 and distnace s=82.9 in this equation.
We get,

Now, we need to solve it for a.
20-20+2.51a=165.8a.
-163.29a=0
a=0.
So, the acceleration would be 0 m/s^2.
Answer:
Each half of the force pair acts on a different object.
Explanation:
When a tennis racket strikes a tennis ball a pair force is produced. when the racket strikes the ball the racket exerts an action force on the tennis ball, according to Newton's third law for every action there is an equal and opposite reaction force, as a reaction the ball exert an equal and opposite force on the racket. These forces are often called pair forces.
As the forces acts on different bodies (Action force act on ball and reaction force act on racket) so the net force tennis ball is never zero.