<span>Two objects move toward each other because of gravitational attraction. As the objects get closer and closer, the force between them increases. </span>
Answer:
Record your measured values of displacement and velocity for times t = 8.0 seconds and t = 10.0 seconds in the columns below.
Next, use the measured displacement and velocity values at t = 7.0 seconds and t = 9.0 seconds to interpolate the values of displacement and velocity at t = 8.0 seconds.
Use the following formula to interpolate and extrapolate. Remember, x and y here represent values on the x and y axes of the graph. The x values will really be time and the y values will be either displacement (x) or velocity (vx).
Explanation:
Record your measured values of displacement and velocity for times t = 8.0 seconds and t = 10.0 seconds in the columns below.
Next, use the measured displacement and velocity values at t = 7.0 seconds and t = 9.0 seconds to interpolate the values of displacement and velocity at t = 8.0 seconds.
Use the following formula to interpolate and extrapolate. Remember, x and y here represent values on the x and y axes of the graph. The x values will really be time and the y values will be either displacement (x) or velocity (vx).
This is the answer
Answer:
1 greater distances fallen in successive seconds
Explanation:
When a body falls freely it is subjected to the action of the force of gravity, which gives an acceleration of 9.8 m / s2, consequently, we are in an accelerated movement
If we use the kinematic formula we can find the position of the body
Y = Vo t + ½ to t2
Where the initial velocity is zero or constant and the acceleration is the acceleration of gravity
Y = - ½ g t2 = - ½ 9.8 t2 = -4.9 t2
Let's look for the position for successive times
t (s) Y (m)
1 -4.9
2 -19.6
3 -43.2
The sign indicates that the positive sense is up
It can be clearly seen that the distance is greatly increased every second that passes
Answer:
2023857702.507m
Explanation:

recall from newton's law of gravitation
G=gravitational constant
mshew=50g
melephant=5*10^3kg
rearth=radius of the earth 6400km or 6400000m
mearth= masss of the earth
Gm(shrew)m(earth)/r(earth)^2 = Gm(elephant)m(earth)/r^2
strike out the left hand side and right hand side variables
m(shrew)/r(earth)^2 = m(elephant)/r^2
r^2 = m(elephant).r(earth)^2 / m(shrew) .........make r^2 the subject of the equation
r^2=
r^2=40960000000000
r=2023857702.507m
When a pendulum is at the midpoint of its oscillation, hanging straight down ...
-- that's the fastest it's going to swing, so its kinetic energy is maximum;
and
-- that's the lowest it's going to get, so its potential energy is minimum.
'c' is your choice.