Answer:
To avoid slipping while playing badminton or to increase friction between the shoes and the badminton court or to enhance the grip.
Explanation:
As the question is general so I will try answer it generally.
As badminton court is usually slippery and flat with no or very little friction and while playing badminton, players have to move very fast from place to place.
So, in order to effectively move faster to take the difficult shots with accuracy badminton players increase the friction between their shoes and the badminton court by shuffling resin to their shoes. It helps to enhance the grip.
Answer:
a) f = 615.2 Hz b) f = 307.6 Hz
Explanation:
The speed in a wave on a string is
v = √ T / μ
also the speed a wave must meet the relationship
v = λ f
Let's use these expressions in our problem, for the initial conditions
v = √ T₀ /μ
√ (T₀/ μ) = λ₀ f₀
now it indicates that the tension is doubled
T = 2T₀
√ (T /μ) = λ f
√( 2To /μ) = λ f
√2 √ T₀ /μ = λ f
we substitute
√2 (λ₀ f₀) = λ f
if we suppose that in both cases the string is in the same fundamental harmonic, this means that the wavelength only depends on the length of the string, which does not change
λ₀ = λ
f = f₀ √2
f = 435 √ 2
f = 615.2 Hz
b) The tension is cut in half
T = T₀ / 2
√ (T₀ / 2muy) = f = λ f
√ (T₀ / μ) 1 /√2 = λ f
fo / √2 = f
f = 435 / √2
f = 307.6 Hz
Traslate
La velocidad en una onda en una cuerda es
v = √ T/μ
ademas la velocidad una onda debe cumplir la relación
v= λ f
Usemos estas expresión en nuestro problema, para las condiciones iniciales
v= √ To/μ
√ ( T₀/μ) = λ₀ f₀
ahora nos indica que la tensión se duplica
T = 2T₀
√ ( T/μ) = λf
√ ) 2T₀/μ = λ f
√ 2 √ T₀/μ = λ f
substituimos
√2 ( λ₀ f₀) = λ f
si suponemos que en los dos caso la cuerda este en el mismo armónico fundamental, esto es que la longitud de onda unicamente depende de la longitud de la cuerda, la cual no cambia
λ₀ = λ
f = f₀ √2
f = 435 √2
f = 615,2 Hz
b) La tension se reduce a la mitad
T = T₀/2
RA ( T₀/2μ) = λ f
Ra(T₀/μ) 1/ra 2 = λ f
fo /√ 2 = f
f = 435/√2
f = 307,6 Hz
Answer:
The speed is
.
(a) is correct option.
Explanation:
Given that,
Potential difference 
Speed 
If it were accelerated instead
Potential difference 
We need to calculate the speed
Using formula of initial work done on proton

We know that,


Put the value into the formula

....(I)
If it were accelerated instead through a potential difference of
, then it would gain a speed will be given as :
Using an above formula,

Put the value of 



Hence, The speed is
.
It would be "W<span>armer temperatures on earth's surface decrease the evaporation of water."</span>
We have that for the Question "the acceleration of the object at time t = 0.7 s is most nearly equal to which of the following?"
- it can be said that the acceleration of the object at time t = 0.7 s is most nearly equal to the slope of the line connecting the origin and the point where the graph where the graph crosses the 0.7s grid line
From the question we are told
the acceleration of the object at time t = 0.7 s is most nearly equal to which of the following?
Generally the equation for the Force is mathematically given as
F=\frac{F}{dx}
Therefore
F=-kdx
k=600Nm^{-1}
now
K.E=0.5x ds^2
K.E=600*(-0.1^2)
K.E=3J
Therefore
the acceleration of the object at time t = 0.7 s is most nearly equal to the slope of the line connecting the origin and the point where the graph where the graph crosses the 0.7s grid line
For more information on this visit
brainly.com/question/23379286