answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
statuscvo [17]
2 years ago
11

A 2.0kg solid disk rolls without slipping on a horizontal surface so that its center proceeds to the right with a speed of 5.0 m

/s. What is the instantaneous speed of the point of the disk that makes contact with the surface?
Physics
1 answer:
Alexandra [31]2 years ago
4 0

Answer:

Instantaneous speed of contact point will be ZERO

Explanation:

As we know that disc is rolling without slipping on horizontal surface

So here the speed of center of the disc is given as

v = 5 m/s

now at the contact point the tangential speed will be in reverse direction

v_t = R\omega

now we know that net contact speed with respect to its lower surface must be zero

v_{net} = v - v_t = 0

so net velocity of contact point with respect to its lower surface must be ZERO here

You might be interested in
A proposed space elevator would consist of a cable stretching from the earth's surface to a satellite, orbiting far in space, th
NISA [10]

To solve this problem we will apply the concepts related to energy conservation. Here we will use the conservation between the potential gravitational energy and the kinetic energy to determine the velocity of this escape. The gravitational potential energy can be expressed as,

PE= \frac{GMm}{d}

The kinetic energy can be written as,

KE= \frac{1}{2} mv^2

Where,

G = 6.67*10^{-11}m^3/kg\cdot s^2Gravitational Universal Constant

m = 5.972*10^{24}kg Mass of Earth

h = 56*10^6m  Height

r = 6.378*10^6m Radius of Earth

From the conservation of energy:

\frac{1}{2} mv^2 = \frac{GMm}{d}

Rearranging to find the velocity,

v = \sqrt{\frac{2Gm}{d}} \rightarrow  Escape velocity at a certain height from the earth

If the height of the satellite from the earth is h, then the total distance would be the radius of the earth and the eight,

d = r+h

v = \sqrt{\frac{2Gm}{r+h}}

Replacing the values we have that

v = \frac{2(6.67*10^{-11})(5.972*10^{24})}{6.378*10^6+56*10^6}

v = 3.6km/s

Therefore the escape velocity is 3.6km/s

3 0
2 years ago
what did classical physics predict about electron flow as a result of light shining on a metal surface?
stiv31 [10]
This looks like the photo electric effect ... classical physics reckoned that if you shone an intense enough light beam on a metal you could get electrons ejected from the metal (maybe in analogy to thermionic emission - heat). It sort of "forgot" about the frequency and photon/particle nature of light.
Enter the "photo electric" effect experiment, Einstein's explanation, and the Nobel committee having an excuse to award E a Nobel prize, even though said prize was probably more for relativity.
8 0
2 years ago
Alicia can row 6 miles downstream in the same time it takes her to row 4 miles upstream. She rows downstream 3 miles/hour faster
m_a_m_a [10]
Let us assume the upstream rowing rate of Alicia = x
Let us assume the downstream rowing rate of Alicia = y
We already know that
Travelling time = Distance traveled/rowing rate
Then
6/(x + 3) = 4/x
6x = 4x + 12
6x - 4x = 12
2x = 12
x = 6
Then
Rowing rate of Alicia going upstream = 6 miles per hour
Rowing rate of Alicia going downstream = 9 miles per hour.
4 0
2 years ago
Read 2 more answers
Which of the following strategies can help Earth's coal supply last longer?
ivanzaharov [21]
D. Teach the public energy conservation
7 0
2 years ago
Read 2 more answers
Use the terms "force", "weight", "mass", and "inertia" to explain why it is easier to tackle a 220 lb football player than a 288
Tomtit [17]
<span><u>Answer </u>
The mass of 220 lb football has less than 288 lb football. So, it will be easier to move it since it will require less force. The heavy football will have a bigger momentum. Since 288 lb has more weight than 220 lb, it will have bigger inertia making it difficult for the players to stop it.
This makes it easier to tackle 220 lb football than 288 lb football. 
</span>
7 0
2 years ago
Read 2 more answers
Other questions:
  • Astronomers initially had difficulty identifying the emission lines in quasar spectra at optical wavelengths because
    8·1 answer
  • If E1 = 13.0 V and E2 = 5.0 V , calculate the current I2 flowing in emf source E2.
    8·1 answer
  • A 0.70-m radius cylindrical region contains a uniform electric field that is parallel to the axis and is increasing at the rate
    11·2 answers
  • When photons with a wavelength of 310. nm strike a magnesium plate, the maximum velocity of the ejected electrons is 3.45 105 m/
    15·1 answer
  • Six dogs pull a two-person sled with a total mass of 280 kg. The coefficient of kinetic friction between the sled and the snow i
    7·2 answers
  • A cyclotron particle accelerator (sometimes called an “atom smasher” in the popular press) is a device for accelerating charged
    9·1 answer
  • A person fishing from a pier observes that 6 wave crests pass by in 8.0 s and estimates the distance between two successive cres
    7·1 answer
  • A 35-kg girl is standing near and to the left of a 43-kg boy on the frictionless surface of a frozen pond. The boy throws a 0.75
    12·1 answer
  • You go to an amusement park with your friend Betty, who wants to ride the 80-m-diameter Ferris wheel. She starts the ride at the
    10·1 answer
  • A 50.0 kg object is moving at 18.2 m/s when a 200 N force
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!