Answer:
(a) Magnetic moment will be 
(b) Torque will be 
Explanation:
We have given dimension of the rectangular 5.4 cm × 8.5 cm
So area of the rectangular coil 
Current is given as 
Number of turns N = 25
(A) We know that magnetic moment is given by 
(b) Magnetic field is given as B = 0.350 T
We know that torque is given by 
Answer:
a = 4.72 m/s²
Explanation:
given,
mass of the box (m)= 6 Kg
angle of inclination (θ) = 39°
coefficient of kinetic friction (μ) = 0.19
magnitude of acceleration = ?
box is sliding downward so,
F - f = m a
f is the friction force
m g sinθ - μ N = ma
m g sinθ - μ m g cos θ = ma
a = g sinθ - μ g cos θ
a = 9.8 x sin 39° - 0.19 x 9.8 x cos 39°
a = 4.72 m/s²
the magnitude of acceleration of the box down the slope is a = 4.72 m/s²
The output of the machine is
(output work) = (output force) x (distance)
450 N-m = (output force) x (3 meters)
Divide each side
by 3 meters: Output force = (450 N-m) / (3 m)
= 150 newtons .
With all the information given about the output work, we don't need
to know anything about the input work, or even the fact that we're
dealing with a machine.
It's comforting, though, to look back and notice that the output work
(450 N-m) is not more than the input work (500 N-m). So everything
is nice and hunky-dory.
___________________________________
Well, my goodness !
I didn't even need to go through all of that.
Given:
-- The input force to the machine is 50 newtons.
-- The mechanical advantage of the machine is 3 .
That right there tells us that
-- The output force of the machine is 150 newtons.
We don't need any of the other given information.
Answer:
The resistance of the axon is
.
Explanation:
Given that,
Inner diameter of the model of an axon, 
Radius of the model, 
Resistivity of the fluid inside the tube wall, 
Length of the axon, l = 2 mm = 0.002 m
We know that the resistance in terms of resistivity of an object is given by :

So, the resistance of the axon is
. Hence, this is the required solution.