Answer:
a

b

c

Explanation:
From the question we are told that
The mass of the bag is 
The normal force experienced is 
The maximum acceleration of the bag is 
Generally this normal force experience by the bag is mathematically represented as

=> 
=> 
=> ![\theta = cos^{-1}[0.9183]](https://tex.z-dn.net/?f=%5Ctheta%20%20%3D%20cos%5E%7B-1%7D%5B0.9183%5D)
=> 
Generally for the bag not to slip , it means that the frictional force is equal to the sliding force

Hence
is mathematically represented as
While
is mathematically represented as

So
=>
=> 
Generally from the workdone equation we have that

Here
is the work done by friction which is mathematically represented as
Here s is the distance covered by the bag
is zero given that velocity at rest is zero
and

so

=> 
substituting 2.55 m/s for v_i and 0.350 for \mu_k we have that

=> 
Answer:
200 N
Explanation:
The crowbar is 2 meter, or 200 cm. The effort arm is 160 cm, so the moment arm of the object is 40 cm.
(800 N) (40 cm) = F (160 cm)
F = 200 N
Answer:
False
Explanation:
This is because according to newtons second law which says the acceleration of an object as produced by a net force is directly proportional to the magnitude of the net force, in the same direction as the net force, and inversely proportional to the mass of the object. So take for example a net a net force in opposite direction will cause an object to slow down.
velocity vector here is not the same as acceleration vector
Answer:
The right answer is "1010 V/m".
Explanation:
The given values are:
Intensity,



Now,
The electric field's maximum value will be:
= 
On substituting the values in the above formula, we get
= 
= 
= 
Torque is equal position vector times (r) times force vector
(F). Since F= 10 N and r = 0.1 m, so the
torque is equal to (10 N) x ( 0.1 m) = 1Nm. The direction of the torque would
be into the screen, clockwise rotation.