Answer:
The horizontal distance x between the two balloons is 54.15 m
Explanation:
The diagram described as obtained online is presented in the image attached to this solution.
Let the horizontal distance between the two balloons be x
Difference in height (vertical distance) between the two balloons = 61 - 48.2 = 12.8 m
Using trigonometric relations, it is evident that
Tan 13.3° = 12.8/x
x = 12.8/tan 13.3° = 12.8/0.2364 = 54.15 m
Answer:
Explanation:
mass of car, m = 1000 kg
initial velocity, u = 20 m/s
final velocity, v = 0 m/s
distance, s = 120 m
Let a be the acceleration of motion
use third equation of motion
v² = u² + 2 as
0 = 20 x 20 + 2 x a x 120
a = - 1.67 m/s²
Let F be the force
Force, F mass x acceleration
F = - 1000 x 1.67
F = - 1666.67 N
The direction of force is towards south and the magnitude of force is 1666.67 N.
Answer: B
Explanation: I said B because if you pull something back what is going to be more of a force pulling back or letting it go for a rubier band yes it will have more force if you let it go
The correct answer is:
<span>paramagnetism
In fact, paramagnetic materials, when they are placed in a magnetic field, they form an internal magnetic field parallel to the external one and in the same direction. However, unlike ferromagnetic materials, they do not retain their magnetization, so when the external magnetic field is removed, their internal induced magnetic field disappears.</span>
The heat required to convert the unknown substance X from one phase to another is 1600 J times the specific heat of that substance.
Explanation:
The heat energy required to convert a substance or to heat up or increase the temperature of a substance can be obtained from the specific heat formula.
As per this formula, the heat energy applied should be equal to the product of mass of the substance with temperature gradient and also with specific heat of the substance. Basically, the heat provided to increase or convert a substance should be more than the specific heat of the substance.

Since, here the mass of the substance X is given as m = 20g and the temperature change is given from -10°C to 70°C.
Then ΔT = (70-(-10))=70+10=80°C.
As the substance is unknown, the specific heat of that substance can also not be determined. Hence keep it as C.

Q = 1600C J
Thus, the heat required to convert the unknown substance X from one phase to another is 1600 J times the specific heat of that substance.