Answer:
The answer is not correct.
Explanation:
Stu's answer is not correct, the equation to use is known as the law of ohm. In which the voltage is defined as the product of the current by the resistance, then we will see this equation.
![V = I*R\\where:\\I = current [amp]\\R = resistance [ohm]\\V = voltage [volts]\\](https://tex.z-dn.net/?f=V%20%3D%20I%2AR%5C%5Cwhere%3A%5C%5CI%20%3D%20current%20%5Bamp%5D%5C%5CR%20%3D%20resistance%20%5Bohm%5D%5C%5CV%20%3D%20voltage%20%5Bvolts%5D%5C%5C)
In order to find resistance, this term is found multiplying the current on the right side of the equation, therefore the current will be divided on the left side of the equation.
![R=\frac{V}{I} \\replacing:\\R=\frac{4}{0.5} \\R=8[ohms]](https://tex.z-dn.net/?f=R%3D%5Cfrac%7BV%7D%7BI%7D%20%5C%5Creplacing%3A%5C%5CR%3D%5Cfrac%7B4%7D%7B0.5%7D%20%5C%5CR%3D8%5Bohms%5D)
That is the reason that the result found by Stu is not correct.
<span>As seen by Barbara, Neil is traveling at a velocity of 6.1 m/s at and angle of 76.7 degrees north from due west.
Let's assume that both Barbara and Neil start out at coordinate (0,0) and skate for exactly 1 second. Where do they end up?
Barbara is going due south at 5.9 m/s, so she's at (0,-5.9)
Neil is going due west at 1.4 m/s, so he's at (-1.4,0)
Now to see Neil's relative motion to Barbara, compute a translation that will place Barbara back at (0,0) and apply that same translation to Neil. Adding (0,5.9) to their coordinates will do this.
So the translated coordinates for Neil is now (-1.4, 5.9) and Barbara is at (0,0).
The magnitude of Neil's velocity as seen by Barbara is
sqrt((-1.4)^2 + 5.9^2) = sqrt(1.96 + 34.81) = sqrt(36.77) = 6.1 m/s
The angle of his vector relative to due west will be
atan(5.9/1.4) = atan(4.214285714) = 76.7 degrees
So as seen by Barbara, Neil is traveling at a velocity of 6.1 m/s at and angle of 76.7 degrees north from due west.</span>
Answer:
The energy required is same for both cases since specific heat capacity (Cp) does not vary with pressure.
Explanation:
Given;
initial temperature, t₁ = 50 °C
final temperature, t₂ = 80 °C
Change in temperature, ΔT =80 °C - 50 °C = 30 °C
Pressure for case 1 = 1 atm
Pressure for case 2 = 3 atm
Energy required in both cases is given;

where;
Cp is specific heat capacity, which varies only with temperature and not with pressure.
Therefore, the energy required is same for both cases since specific heat capacity (Cp) does not vary with pressure.
Answer:
Δx=(v+v0/2)t
Explanation:
We can figure out which kinematic formula to use by choosing the formula that includes the known variables, plus the target unknown.
In this problem, the target unknown is the initial velocity v_0v
0
v, start subscript, 0, end subscript of the roller coaster.