Answer:
When the speed of the bottle is 2 m/s, the average maximum height of the beanbag is <u>0.10</u> m.
When the speed of the bottle is 3 m/s, the average maximum height of the beanbag is<u> 0.43</u> m.
When the speed of the bottle is 4 m/s, the average maximum height of the beanbag is <u>0.87</u> m.
When the speed of the bottle is 5 m/s, the average maximum height of the beanbag is <u>1.25</u> m.
When the speed of the bottle is 6 m/s, the average maximum height of the beanbag is <u>1.86</u> m.
Sorry for not answering early on! If anyone in the future needs help, I got these answers from 2020 egenuity, though I can't post the picture for proof. Stay Safe!
A bathroom scales works due to gravity. Under normal
conditions, a reading can be obtained when your body is pushing some force on
the scale. However in this case, since you and the scale are both moving
downwards, so your body is no longer pushing on the scale. Therefore the answer
is:
<span>The reading will drop to 0 instantly</span>
Answer:
this measurement if feet is: 2.624672 ft
Explanation:
Notice that 80 cm can be expressed as 0.8 meters, and In order to convert from meters to feet, one needs to multiply the meter measurement times 3.28084. Therefore:
0.80 m can be written in feet as: 0.80 * 3.28084 feet = 2.624672 feet
Answer:
L = mp*v₀*(ms*D) / (ms + mp)
Explanation:
Given info
ms = mass of the hockey stick
uis = 0 (initial speed of the hockey stick before the collision)
xis = D (initial position of center of mass of the hockey stick before the collision)
mp = mass of the puck
uip = v₀ (initial speed of the puck before the collision)
xip = 0 (initial position of center of mass of the puck before the collision)
If we apply
Ycm = (ms*xis + mp*xip) / (ms + mp)
⇒ Ycm = (ms*D + mp*0) / (ms + mp)
⇒ Ycm = (ms*D) / (ms + mp)
Now, we can apply the equation
L = m*v*R
where m = mp
v = v₀
R = Ycm
then we have
L = mp*v₀*(ms*D) / (ms + mp)