answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
LenaWriter [7]
1 year ago
11

A radioactive isotope has a half-life of 2 hours. If a sample of the element contains 600,000 radioactive nuclei at 12 noon, how

many radioactive nuclei would be left at 6 pm?
Physics
1 answer:
storchak [24]1 year ago
7 0

Answer: There will be 75258 nuclei left at 6 pm.

Explanation:

a) half-life of the radioactive substance:

Half life is the amount of time taken by a radioactive material to decay to half of its original value.

t_{\frac{1}{2}}=\frac{0.69}{k}

k=\frac{0.69}{t_{\frac{1}{2}}}=\frac{0.693}{2hours}=0.346hours^{-1}

b) Expression for rate law for first order kinetics is given by:

A=A_0e^{-kt}

where,

k = rate constant  

t = time for decomposition = 6 hours ( from 12 noon to 6 pm)

A = activity at time t = ?

A_0 = initial activity  = 600, 000

A=600000\times e^{-0.346\times 6}

A=75258

Thus there will be 75258 nuclei left at 6 pm.

You might be interested in
Hippos spend much of their lives in water, but amazingly, they don’t swim. manatees, They have, like little very body fat. The d
kenny6666 [7]

Answer:

428.59 N

Explanation:

Buoyant force, B=Vg\rho where V is volume, g is gravitational constant and \rho is density

B+F_{upward}=mg where F_{upward} is upward force

Vg\rho_{w}+F_{upward}=mg

F_{upward}=mg- Vg\rho_{w}

F_{upward}=g(mg- V\rho_{w})=g(m-m\frac {\rho_{w}{\rho_{hippo}} where \rho_{hippo} is the density of hippo

F_{upward}=mg(1-\frac {\rho_{w}}{\rho_{hippo}})

Using g as 9.81

F_{upward}=1500*9.81*(1-1000/1030)= 428.5922 N

Therefore, the upward force=428.59 N

3 0
2 years ago
A stone is thrown horizontally from 2.4m above the ground at 35m/s. The wall is 14m away and 1m high.At what height the stone wi
KIM [24]

The stone reaches the wall at a height of <u>1.62 m</u>.

The stone lands at a point <u>24.5 m</u> from the point of projection.

The stone is projected horizontally with a velocity u at a height <em>h</em> from the ground. The wall is located at a distance <em>x</em> from the point of projection. The stone takes a time <em>t</em> to reach the wall and in the same time the stone falls a vertical distance <em>y</em>.

The horizontal distance <em>x</em> is traveled with a constant velocity <em>u</em>.

x=ut

Calculate the time taken <em>t</em>.

t=\frac{x}{u} \\ =\frac{14m}{35 m/s} \\ =0.40s

The stone's initial vertical velocity is zero. It falls through a distance <em>y</em> in the time <em>t</em> under the action of acceleration due to gravity <em>g</em>.

y=\frac{1}{2} gt^2\\ \frac{1}{2} (9.81m/s^2)(0.40s)^2\\ =0.784m

The height  <em>h₁ </em>of the stone above the ground when it reaches the wall  is given by,

h_1=h-y\\ =(2.4m)-(0.784m)\\ =1.616m=1.62m

When the stone reaches the wall, its height from the ground is <u>1.62m.</u>

The stone thus crosses over the wall, since the height of the wall is 1 m. It reaches the ground at a distance <em>R</em> from the point of projection. If the time taken by the stone to reach the ground is <em>t₁, </em>then,

h=\frac{1}{2} gt_1^2

Calculate the time taken by the stone to reach the ground.

t_1=\sqrt{\frac{2h}{g} } \\=\sqrt{\frac{2(2.4m)}{9.81m/s^2} } \\ =0.699 s

The horizontal distance traveled by the stone is given by,

R=ut_1 \\ =(35m/s)(0.699s)\\ =24.5m

The stone lands at point 24.5 m from the point of projection and 10.5 m from the wall.

3 0
2 years ago
The suspension cable of a 1,000 kg elevator snaps, sending the elevator moving downward through its shaft. The emergency brakes
tester [92]

Answer:

option (E) 1,000,000 J

Explanation:

Given:

Mass of the suspension cable, m = 1,000 kg

Distance, h = 100 m

Now,

from the work energy theorem

Work done by the gravity = Work done by brake

or

mgh = Work done by brake

where, g is the acceleration due to the gravity = 10 m/s²

or

Work done by brake  = 1000 × 10 × 100

or

Work done by brake = 1,000,000 J

this work done is the release of heat in the brakes

Hence, the correct answer is option (E) 1,000,000 J

4 0
2 years ago
Optical tweezers use light from a laser to move single atoms and molecules around. Suppose the intensity of light from the tweez
Zanzabum

(a)  3.3\cdot 10^{-6} Pa

The radiation pressure exerted by an electromagnetic wave on a surface that totally absorbs the radiation is given by

p=\frac{I}{c}

where

I is the intensity of the wave

c is the speed of light

In this problem,

I=1000 W/m^2

and substituting c=3\cdot 10^8 m/s, we find the radiation pressure

p=\frac{1000 W/m^2}{3\cdot 10^8 m/s}=3.3\cdot 10^{-6}Pa

(b) 4.4\cdot 10^{-8} m/s^2

Since we know the cross-sectional area of the laser beam:

A=6.65\cdot 10^{-29}m^2

starting from the radiation pressure found at point (a), we can calculate the force exerted on a tritium atom:

F=pa=(3.3\cdot 10^{-6}Pa)(6.65\cdot 10^{-29} m^2)=2.2\cdot 10^{-34}N

And then, since we know the mass of the atom

m=5.01\cdot 10^{-27}kg

we can find the acceleration, by using Newton's second law:

a=\frac{F}{m}=\frac{2.2\cdot 10^{-34} N}{5.01\cdot 10^{-27} kg}=4.4\cdot 10^{-8} m/s^2

6 0
2 years ago
B. A hydraulic jack has a ram of 20 cm diameter and a plunger of 3 cm diameter. It is used for lifting a weight of 3 tons. Find
lozanna [386]

Answer:

option (b)

Explanation:

According to the Pascal's law

F / A = f / a

Where, F is the force on ram, A be the area of ram, f be the force on plunger and a be the area of plunger.

Diameter of ram, D = 20 cm, R = 20 / 2 = 10 cm

A = π R^2 = π x 100 cm^2

F = 3 tons = 3000 kgf

diameter of plunger, d = 3 cm, r = 1.5 cm

a = π x 2.25 cm^2

Use Pascal's law

3000 / π x 100 = f / π x 2.25

f = 67.5 Kgf

4 0
2 years ago
Other questions:
  • The first thing to focus on when creating a workout plan is
    7·2 answers
  • What fraction of a piece of concrete will be submerged when it floats in mercury? the density of concrete is 2.3×103kg/m3 and de
    7·1 answer
  • Calculate the average velocity in m/y of a tectonic plate that has travelled 9000 km to the south in 60 million years
    14·1 answer
  • A 1500-kg car locks its brakes and skids to a stop on a slippery horizontal road, leaving skid marks that are 15 m long. How muc
    5·1 answer
  • The discovery and characterization of cathode rays was important in the development of the atomic theory because
    8·1 answer
  • Suppose you analyze standardized test results for a country and discover almost identical distributions of physics scores for fe
    6·1 answer
  • A spherical drop of water carrying a charge of 30 pC has a potential of 500 V at its surface (with V 0 at infinity). (a) What is
    10·1 answer
  • When you drink liquid through a straw, is it more accurate to say the liquid is pushed up the straw rather than sucked up the st
    9·1 answer
  • A student redid the experiment of mixing room-temperature water and warm
    11·1 answer
  • A pressure vessel that has a volume of 10m3 is used to store high-pressure air for operating a supersonic wind tunnel. If the ai
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!