answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Shkiper50 [21]
1 year ago
8

A solenoid of length 18 cm consists of closely spaced coils of wire wrapped tightly around a wooden core. The magnetic field str

ength is 2.0 mT inside the solenoid near its center when a certain current flows through the coils. If the coils of the solenoid are now pulled apart slightly, stretching it to 21 cm without appreciably changing the size of the coils, what does the magnetic field become near the center of the solenoid when the same current flows through the coils
Physics
1 answer:
Kisachek [45]1 year ago
3 0

Answer:

B_2 = 1.71 mT

Explanation:

As we know that the magnetic field near the center of solenoid is given as

B = \frac{\mu_0 N i}{L}

now we know that initially the length of the solenoid is L = 18 cm and N number of turns are wounded on it

So the magnetic field at the center of the solenoid is 2 mT

now we pulled the coils apart and the length of solenoid is increased as L = 21 cm

so we have

\frac{B_1}{B_2} = \frac{L_2}{L_1}

now plug in all values in it

\frac{2.0 mT}{B_2} = \frac{21}{18}

B_2 = 1.71 mT

You might be interested in
Find the mass of a person walking west at a speed of 0.8 m/s with a momentum of 52.0 kg.m/s west.
KIM [24]

Answer:

mass of the person walking to west is 65 kg.

Given:

Momentum = 52 \frac{kg m}{s}

Speed = 0.8 \frac{m}{s}

To find:

Mass of the person = ?

Formula used:

Momentum is given by,

P = m × v

Where, P = momentum

m = mass

v = speed

Solution:

Momentum is given by,

P = m × v

Where, P = momentum

m = mass

v = speed

Mass = \frac{P}{v}

m = \frac{52}{0.8}

m = 65 kg

Thus, mass of the person walking to west is 65 kg.

5 0
2 years ago
If the gas in a container absorbs 275 Joules of heat, has 125 Joules of work done on it, then does 50 Joules of work, what is th
cluponka [151]

Answer:

    The increase in the internal energy = 350 J

Explanation:

Given that

Q= 275  J

W= - 125 J

W' = 50 J

W(net)= -125  + 50 = -75 J

Sign -

1.Heat rejected by system - negative

2.Heat gain by system - Positive

3.Work done by system = Positive

4.Work done on the system-Negative

Lets take change in the  internal energy =ΔU

We know that

Q= ΔU + W(net)

275 = ΔU -75

ΔU= 275 + 75 J

ΔU=350 J

The increase in the internal energy = 350 J

7 0
2 years ago
Two students walk in the same direction along a straight path, at a constant speed one at 0.90 m/s and the other at 1.90 m/s. a.
creativ13 [48]

Answer: a) 456.66 s ; b) 564.3 m

Explanation: The time spend to cover any distance a constant velocity is given by:

v= distance/time so t=distance/v

The slower student time is: t=780m/0.9 m/s= 866.66 s

For the faster students t=780 m/1,9 m/s= 410.52 s

Therefore the time difference is 866.66-410.52= 456.14 s

In order to calculate the distance that faster student should  walk

to arrive 5,5 m before that slower student, we consider the follow expressions:

distance =vslower*time1

distance= vfaster*time 2

The time difference is 5.5 m that is equal to 330 s

replacing in the above expression we have

time 1= 627 s

time2 = 297 s

The distance traveled is 564,3 m

8 0
2 years ago
When you skid to a stop on your bike, you can significantly heat the small patch of tire that rubs against the road surface. Sup
Wittaler [7]

Answer:

W_f = 148.17J

Explanation:

During the exchange of applied force, thermal energy is generated by the friction that exists between the ground and the tire.

Said force according to the statement is the reaction of half the force on the rear tire. In this way the normal force acted is,

N=\frac{mg}{2} = \frac{90*9.8}{2} = 441N

The work done is given by the friction force and the distance traveled,

W_f = fd = \mu_k Nd

Where \mu_k [/ tex] is the coefficient of kinetic frictionN is the normal force previously found d is the distance traveled,Replacing,[tex]W_f = (0.80)(441)(0.42)

The thermal energy released through the work done is,

W_f = 148.17J

3 0
2 years ago
A) The current theory of the structure of the Earth, called plate tectonics, tells us that the continents are in constant motion
suter [353]

A) The mass of the continent is 2.5\cdot 10^{21} kg

B) The kinetic energy is 2016 J

C) The speed of the jogger should be 7.1 m/s

Explanation:

A)

The mass of the continent can be calculated as

m = \rho V

where

\rho = 2800 kg/m^3 is its density

V is its volume

We have to calculate its volume. We know that the continent is represented as a slab of side 5900 km (so its surface is 5900 x 5900, assuming it is a square) and depth of 26 km, so its volume is:

V=(5900 km)^2 (26 km)=9.05\cdot 10^8 km^3 =9.05 \cdot 10^8 \cdot (10^9 m^3/k^3)=9.05\cdot 10^7 m^3

So, the mass of the continent is

m=\rho V = (2800)(9.05\cdot 10^{17})=2.5\cdot 10^{21} kg

B)

The kinetic energy of a body is given by

K=\frac{1}{2}mv^2

where

m is the mass of the body

v is its speed

For the continent, we have:

m=2.5\cdot 10^{21} kg is the mass

v=4 cm/year is the speed

We have to convert the speed into SI units. we have:

1 cm = 0.01 m

1 year = (365)(24)(60)(60) s = 3.15\cdot 10^7 s

So, the speed is

v=4 cm/year = 0.04 m/year \cdot \frac{1}{3.15\cdot 10^7}=1.27\cdot 10^{-9} m/s

Therefore, the kinetic energy is

K=\frac{1}{2}(2.5\cdot 10^{21} kg)(1.27\cdot 10^{-9} m/s)^2=2016 J

C)

Again, the kinetic energy of an object is

K=\frac{1}{2}mv^2

For the jogger in this problem, his mass is

m = 80 kg

And we want its kinetic energy to be equal to that of the continent, so

K = 2016 J

Re-arranging the equation for v, we find what speed the jogger needs to have this kinetic energy:

v=\sqrt{\frac{2K}{m}}=\sqrt{\frac{2(2016)}{80}}=7.1 m/s

Learn more about kinetic energy here:

brainly.com/question/6536722

#LearnwithBrainly

8 0
2 years ago
Other questions:
  • When Jane drives to work, she always places her purse on the passenger’s seat. By the time she gets to work, her purse has falle
    5·2 answers
  • A brick is resting on a rough incline as shown in the figure. The friction force acting on the brick, along the incline, is
    9·2 answers
  • While a gymnast is in the air during a leap, which of the following quantities must remain constant for her?A) Angular momentum
    14·1 answer
  • A proton is propelled at 4×106 m/s perpendicular to a uniform magnetic field. 1) If it experiences a magnetic force of 4.8×10−13
    14·1 answer
  • Imagine that you are sitting in a closed room (no windows, no doors) when, magically, it is lifted from Earth and sent accelerat
    14·1 answer
  • The drawing shows a side view of a swimming pool. The pressure at the surface of the water is atmospheric pressure. The pressure
    7·2 answers
  • An object initially at rest experiences a constant horizontal acceleration due to the action of a resultant force applied for 10
    15·1 answer
  • A 817 kg car has four 8.91 kg wheels. When the car is moving, what fraction of the total kinetic energy of the car is due to rot
    12·1 answer
  • hows a map of Olivia's trip to a coffee shop. She gets on her bike at Loomis and then rides south 0.9mi to Broadway. She turns e
    10·1 answer
  • A reversible heat engine, operating in a cycle, withdraws thermal energy from a high-temperature reservoir (the temperature of w
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!