Answer:
Let us consider the case of a bus turning around a corner with a constant velocity, as the bus approaches the corner, the velocity at say point A is Va, and is tangential to the curve with direction pointing away from the curve. Also, the velocity at another point say point B is Vb and is also tangential to the curve with direction pointing away from the curve.<em> </em><em>Although the velocity at point A and the velocity at point B have the same magnitude, their directions are different (velocity is a vector quantity), and hence we have a change in velocity. By definition, an acceleration occurs when we have a change in velocity, so the bus experiences an acceleration at the corner whose direction is away from the center of the corner</em>.
The acceleration is not aligned with the direction of travel because<em> the change in velocity is at a tangent (directed away) to the direction of travel of the bus.</em>
Answer:

Explanation:
An object is at rest along a slope if the net force acting on it is zero. The equation of the forces along the direction parallel to the slope is:
(1)
where
is the component of the weight parallel to the slope, with m being the mass of the object, g the acceleration of gravity,
the angle of the slope
is the frictional force, with
being the coefficient of friction and R the normal reaction of the incline
The equation of the forces along the direction perpendicular to the slope is

where
R is the normal reaction
is the component of the weight perpendicular to the slope
Solving for R,

And substituting into (1)

Re-arranging the equation,

This the condition at which the equilibrium holds: when the tangent of the angle becomes larger than the value of
, the force of friction is no longer able to balance the component of the weight parallel to the slope, and so the object starts sliding down.
Given the distance r = 2/1000 m, the force between them F =
0.0104 N, the mass of the two object can be calculated using formula:
F = G(m1m2)/r^2 since the mass are equal F = G (m^2)/r^2
And where G = is the gravitational constant (6.67E-11 m3 s-2
kg-1)
The mass of the two objects are 24.96 kg
Recall that in the equilibrium position, the upward force of the spring balances the force of gravity on the weight is given below.
Explanation:
Measure unstretched length of spring, L. E.g. L = 0.60m.
Set mass to a convenient value (e.g. m = 0.5kg).
Hang mass.
Measure new spring length, L'. E.g. L' = 0.70m.
Calculate extension: e = L' - L = 0.70 – 0.60 = 0.10m
Use mg = ke (in equilibrium weight = tension)
k = mg/e
Don't know what value you are using for example. Suppose it is 10N/kg (same thing as 10m/s²).
k = 0.5*10/0.10 = 50 N/m
Repeat for a few different masses. (L always stays the same.)
Take the average of your k values.
A person lifting a chair is converting chemical energy to mechanical energy.