Answer:
The answer is "between 20 s and 30 s".
Explanation:
Calculating the value of positive displacement:


Calculating the value of negative displacement upon the time t:




That's why its value lie in "between 20 s and 30 s".
The cars will have equal speeds and the 2 kg car will have greater kinetic energy.
Answer:

Explanation:
The electric field inside a parallel plate capacitor is

where A is the area of one of the plates, and Q is the charge on the capacitor.
The electric force on the electron is

where q is the charge of the electron.
By definition the capacitance of the capacitor is given by

Plugging this identity into the force equation above gives

The work done by this force is equal to change in kinetic energy.
W = Fx = (30q)(0.05) = 1.5q = K
The charge of the electron is 
Therefore, the kinetic energy is 
Answer:
Explanation:
total weight acting downwards
= 3g + 10g
13 g
volume of lead = 10 / 11.3 = .885 cm³
Let the volume of bobber submerged in water be v in floating position . buoyant force on bobber = v x 1 x g
Buoyant force on lead = .885 x 1 x g
total buoyant force = vg + .885 g
For floating
vg + .885 g = 13 g
v = 12.115 cm³
total volume of bobber
= 4/3 x 3.14 x 2³
= 33.5 cm³
fraction of volume submerged
= 12.115 / 33.5
= .36
= 36 %
Answer:
The amount of charge the space shuttle collects is -1.224nC
Explanation:
The magnitude of Electric potential is given as;
V = kq/r
where;
V is the electric potential in volts
k is coulomb's constant
r is the radius of the sphere or distance moved by the charge
given; V = -1.1 V, k = 8.99 x 10⁹ Nm²/C², r = 10m
Substituting this values in the above equation, we estimate the amount of charge space shuttle collects.
q = (V*r)/k
q = (-1.1 *10)/(8.99 x 10⁹ )
q = -1.224 X 10⁻⁹ C
q = -1.224nC
Therefore, the amount of charge the space shuttle collects is -1.224nC