Answer:
Flow Rate = 80 m^3 /hours (Rounded to the nearest whole number)
Explanation:
Given
- Hf = head loss
- f = friction factor
- L = Length of the pipe = 360 m
- V = Flow velocity, m/s
- D = Pipe diameter = 0.12 m
- g = Gravitational acceleration, m/s^2
- Re = Reynolds's Number
- rho = Density =998 kg/m^3
- μ = Viscosity = 0.001 kg/m-s
- Z = Elevation Difference = 60 m
Calculations
Moody friction loss in the pipe = Hf = (f*L*V^2)/(2*D*g)
The energy equation for this system will be,
Hp = Z + Hf
The other three equations to solve the above equations are:
Re = (rho*V*D)/ μ
Flow Rate, Q = V*(pi/4)*D^2
Power = 15000 W = rho*g*Q*Hp
1/f^0.5 = 2*log ((Re*f^0.5)/2.51)
We can iterate the 5 equations to find f and solve them to find the values of:
Re = 235000
f = 0.015
V = 1.97 m/s
And use them to find the flow rate,
Q = V*(pi/4)*D^2
Q = (1.97)*(pi/4)*(0.12)^2 = 0.022 m^3/s = 80 m^3 /hours
Answer:
Los fusibles están diseñados de tal forma que estos se "rompen" o se funden, cuando la demanda eléctrica supera un dado valor (cuando demasiada electricidad pasa a través de el).
Una vez el filamento se rompe, la corriente ya no puede circular por el (podes pensar en esta situación como un cable roto, la electricidad no puede circular por este cable)
Entonces, al romperse el filamento, en caso de una sobrecarga eléctrica, el flujo de electricidad se corta, y de esta forma se protege al computador de posibles sobrecargas.
We are going to rewrite each number:
(4.48E-8) = 0.0000000448
(5.2E-4) = 0.00052
We observe that when multiplying, the exponent will be on the order of 10 ^ -11
Doing the multiplication we have:
(4.48E-8) * (5.2E-4) = 2.3296E-11
Rewriting:
(4.48E-8) * (5.2E-4) = 2.33E-11
Answer:
2.33E-11
1km=1000m=1000000mm
118km/h=118000000 mm/h
Answer:
There is no heat transfer in the system as the temperature before and after remains same i.e, 25 C.
Explanation:
Heat energy is mathematically expressed as,
Q=mCΔT
By looking at the above equation we can say that heat gain or loss by any system is equal to the mass times specific heat multiplied by the change in temperature.
Now if we consider the water system in view of this equation then ΔT would be 0 therefore it is evident that there is no transfer of heat.
If we consider the empty half of the tank so it is mentioned that there is nothing no air and giving us m=0, hence Q=0.
Mathematically we can express this as
Q=mCΔT
Q=(5)(4200)(0)
Q= 0 KJ <em>(which indicates that there was no heat gain or loss by the system)</em>