<span>As seen by Barbara, Neil is traveling at a velocity of 6.1 m/s at and angle of 76.7 degrees north from due west.
Let's assume that both Barbara and Neil start out at coordinate (0,0) and skate for exactly 1 second. Where do they end up?
Barbara is going due south at 5.9 m/s, so she's at (0,-5.9)
Neil is going due west at 1.4 m/s, so he's at (-1.4,0)
Now to see Neil's relative motion to Barbara, compute a translation that will place Barbara back at (0,0) and apply that same translation to Neil. Adding (0,5.9) to their coordinates will do this.
So the translated coordinates for Neil is now (-1.4, 5.9) and Barbara is at (0,0).
The magnitude of Neil's velocity as seen by Barbara is
sqrt((-1.4)^2 + 5.9^2) = sqrt(1.96 + 34.81) = sqrt(36.77) = 6.1 m/s
The angle of his vector relative to due west will be
atan(5.9/1.4) = atan(4.214285714) = 76.7 degrees
So as seen by Barbara, Neil is traveling at a velocity of 6.1 m/s at and angle of 76.7 degrees north from due west.</span>
Answer:
0.4 A
Explanation:
From the question,
Electric power = Voltage×current
P = VI.......................... Equation 1
Make I the subject of the equation
I = P/V..................... Equation 2
Given: P = 96 J/s, V = 230 V.
Substitute into equation 2
I = 96/230
I = 0.4 A.
Hence the current is 0.4 A
Answer:
2046.37 kPa
Explanation:
Given:
Number of moles, n = 125
Temperature, T = 20° C = 20 + 273 = 293 K
Radius of the cylinder, r = 17 cm = 0.17 m
Height of the cylinder, h = 1.64 m
thus,
volume of the cylinder, V = πr²h
= π × 0.17² × 1.64
= 0.148 m³
Now,
From the ideal gas law
we have
PV = nRT
here,
P is the pressure
R is the ideal gas constant = 8.314 J / mol. K
thus,
P × 0.148 = 125 × 8.314 × 293
or
P × 0.148 = 304500.25
or
P = 2046372.64 Pa = 2046.37 kPa
Answer:
Bounce 1 , pass 3, emb2
Explanation:
(By the way I am also doing that question on College board physics page) For the Bounce arrow, since it bumps into the object and goes back, it means now it has a negative momentum, which means a larger momentum is given to the object. P=mv, so the velocity is larger for the object, and larger velocity means a larger kinetic energy which would result in a larger change in the potential energy. Since K=0.5mv^2=U=mgh, a larger potential energy would have a larger change in height which means it has a larger angle θ with the vertical line. Comparing with the "pass arrow" and the "Embedded arrow", the embedded arrow gives the object a larger momentum, Pi=Pf (mv=(M+m)V), it gives all its original momentum to the two objects right now. (Arrow and the pumpkin), it would have a larger velocity. However for the pass arrow, it only gives partial of its original momentum and keeps some of them for the arrow to move, which means the pumpkin has less momentum, means less velocity, and less kinetic energy transferred into the potential energy, and means less change in height, less θangle. So it is Bounce1, pass3, emb2.
Answer:
The distance between the earth and the star is increasing.
Explanation:
When we observe an object and its electromagnetic radiation has been displaced to blue, it means that it is getting closer to us, causing the light waves it emits to get closer together and its wavelength to decrease towards blue, this is knowm as blueshift.
On the contrary, when an object is rapidly moving away from us, the light waves or electromagnetic radiation it emits have been stretched from their normal wavelength to a longer wavelength, towards the red part of the spectrum. This is known as redshift.
This phenomenon of changes in wavelength and frequency due to movement (whether the source approaches or moves away) is described by the Doppler effect.
So for this case because the light we perceive from the star has moved to the red part of the visible spectrum, we can conclude that it is moving away from the earth, and that the distance between the star and the earth is increasing.